Karnatak University Journal of Science

Volume: 55 Issue: 3

  • Open Access
  • Original Article

The Chromatic Numbers of Knot Product Graphs

Keerthi G Mirajkar1,∗, Shobha Rajashekhar Konnur1


1Department of Mathematics, Karnatak Arts College, Karnatak University, Dharwad, 580001, Karnataka, India

Corresponding author email: [email protected]

Year: 2024, Page: 17-21, Doi: https://doi.org/10.61649/kujos/v55i3.24.15

Received: July 24, 2024 Accepted: Aug. 31, 2024 Published: Sept. 23, 2024

Abstract

Coloring is a process of assigning colors to a graph’s vertices such that adjacent vertices are assigned distinct colors. This article contains the chromatic number and Equitable chromatic number of Knot Product graphs. Further, Edge chromatic number and Total chromatic number of Knot Product graph of path graphs are calculated.

Keywords: Knot Product graphs, Chromatic number, Equitable chromatic number, Edge chromatic number, Total chromatic number

References

  1. Ore O. The Four Color Problem. (p. xv + 259) New York, USA. Academic Press. 1967.

  2. Basavanagoud B, Mirajkar KG. Permanent Graphs and Knot Product GraphsJournal of Intelligent Systems. 2008;2(1):69–72. Available from: https://www.researchgate.net/publication/299080245_Permanent_Graphs_and_Knot_Product_Graphs

  3. Sofier A. The Mathematical Coloring book. (p. xxx + 607) Springer. 2009.

  4. Harary F. Graph Theory. (pp. 1-274) Massachusetts, USA. Addison Wesely . 1969.

  5. Tesman BA. List T coloring of graphsDiscrete Applied Mathematics. 1993;45(3):277–289. Available from: https://doi.org/10.1016/0166-218X(93)90015-G

  6. Asratian AS, Kamalian RR. Investigation on interval edge-colorings of graphsJournal of Combinatorial Theory, Series B. 1994;62(1):34–43. Available from: https://doi.org/10.1006/jctb.1994.1053

  7. Behzad M, Chartrand G. Introduction to the Theory of Graphs. (pp. 1-271) Allyn and Bacon. 1972.

  8. Behzad M, Chartrand G, Cooper JK. The color numbers of complete graphsJournal of the London Mathematical Society. 1967;42:226–228. Available from: https://www.math.ru.nl/OpenGraphProblems/Gerjan/Behzad%20Chartrand%20Cooper.pdf

  9. Guptha P, Sikhwal O. A study of vertex-edge coloring techniques with applicationInternational Journal Of Core Engineering & Management(IJCEM). 2014;1(2):27–32. Available from: https://ijcem.in/wp-content/uploads/2014/05/A-study-of-Vertex-Edge-Coloring-Techniques-with-Application.pdf

  10. Vignesh R, Geetha J, Somasundaram K. Total Coloring Conjecture for Certain Classes of GraphsAlgorithms . 2018;11(10):1–7. Available from: https://doi.org/10.3390/a11100161

  11. Vizing VG. On an estimate of the chromatic class of a p-graphMetody Diskret. Analiz. 1964;3:25–30. Available from: https://cir.nii.ac.jp/crid/1571980075458819456?lang=en#citations_container

Cite this article

Keerthi G Mirajkar, Shobha Rajashekhar Konnur. The Chromatic Numbers of Knot Product Graphs. Karnatak University Journal of Science 55(3), (2024), 17–21

Views
53
Downloads
24
Citations