Karnatak University Journal of Science

Volume: 54 Issue: 3

  • Open Access
  • Original Article

Study and Characterization of Biosynthesized Silver Nanoparticles and their Biological Applications

Santosh Chikkamath1,*, Pravin Patil1,*, Badarinath Kulkarni1

1Post Graduate Department of Studies and Research in Chemistry, K.L.E Society’s P. C. Jabin Science College Vidyanagar, Hubballi, 580031, Karnataka, India

*Corresponding author email: [email protected][email protected]

Year: 2023, Page: 46-57, Doi: https://doi.org/10.61649/kujos/v54i3.santosh

Received: June 8, 2023 Accepted: July 7, 2023 Published: Nov. 15, 2023

Abstract

Nanotech field is a rapidly growing, which has led to promising revolutionary applications in medical and engineering in terms of their efficacy, safety and economy. The synthesis and obtained nanomaterial where, the advancement of green synthesis over chemical and physical methods is environment friendly, cost effective and easily scaled up for large scale synthesis of nanoparticles. In the present work we were focused on the synthesis of Silver nanoparticle, it was obtained by green method by using Camellia sinensis tea powder extract. Ag NP’s were characterized by XRD, FTIR, UV-spectral and SEM measurements analysis. Antibacterial activity of Ag NP’s are studied by Diffuse disc method. The activity of AgNPs is dependent on the size and capping agents used. Since the particles are in range as proven by characterization studies.

Keywords: Nanomaterial, Antibactirial activity, Camelle Sinensis, Diffuse disc method

References

  1. Garg A, Visht S, Sharma PK, Kumar N. Formulation, characterization and application on nanoparticle: a reviewDer Pharmacia Sin. 2011;2(2):17–26. Available from: https://www.imedpub.com/articles/formulation-characterization-and-application-on-nanoparticle-a-review.pdf

  2. Akbari B, Tavandashti MP, Zandrahimi M. Particle size characterization of nanoparticles-a practical approachIran. J. Mater. Sci. Eng. 2011;8:48–56.

  3. Schmid G. Nanoparticles: From Theory to Application. Wiley-VCH..

  4. Sharma P, Ganti S, Bhate N. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneitiesApplied Physics Letters. 2003;82(4):535–537. Available from: https://doi.org/10.1063/1.1539929

  5. Cahay M. Quantum confinement VI Nanostructured materials and devices: Proceedings of the international symposium. 2001.

  6. Tran QH, Nguyen VQ, Le AT. Silver nanoparticles synthesis, properties, toxicology, applications and perspectivesAdvances in Natural Sciences: Nanoscience and Nanotechnology. 2013;4(3):1–21. Available from: https://doi.org/10.1088/2043-6262/4/3/033001

  7. Kumar PPNV, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activityIndustrial Crops and Products. 2014;52:562–566. Available from: https://doi.org/10.1016/j.indcrop.2013.10.050

  8. Zhang XFF, Liu ZGG, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic ApproachesInternational Journal of Molecular Sciences. 2016;17(9):1534. Available from: https://doi.org/10.3390/ijms17091534

  9. Popescu M, Velea A, Lorinczi A. Biogenic production of nanoparticlesDig J Nanomater. Bios. 2010;54:1035–1040.

  10. Baruwati B, Polshettiwar V, Varma RS. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwavesGreen Chemistry. 2009;11(7):926–930. Available from: https://doi.org/10.1039/B902184A

  11. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticlesScience. 1997;277(5329):1078–1081. Available from: https://doi.org/10.1126/science.277.5329.1078

  12. Hurst SJ, Lytton-Jean AKR, Mirkin CA. Maximizing DNA Loading on a Range of Gold Nanoparticle SizesAnalytical Chemistry. 2006;78(24):8313–8318. Available from: https://doi.org/10.1021/ac0613582

  13. Tran QH, Nguyen VQ, Le AT. Corrigendum: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectivesAdvances in Natural Sciences: Nanoscience and Nanotechnology. 2013;9(4):049501. Available from: https://doi.org/10.1088/2043-6254/aad12b

  14. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methodsRes Pharm Sci. 2014;9(6):385–406. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326978/

  15. Reddy GAK, Joy JM, Mitra T, Shabnam S, Shilpa T. Nano silver - A reviewInt. J. Adv. Pharm. 2012(1):9–15.

  16. Samberg ME, Oldenburg SJ, Amonteiro-Riviere N. Evaluation of silver nanoparticle toxicity in vivo skin and in vitro keratinocytesEnviron. Health Persp. 2010;118(3):407–413. Available from: https://doi.org/10.1289/ehp.0901398

  17. Sintubin L, Gusseme BD, Meeren PVD, Pycke BFG, Verstraete W, Boon N. The antibacterial activity of biogenic silver and its mode of actionApplied Microbiology and Biotechnology. 2011;91(1):153–162. Available from: https://doi.org/10.1007/s00253-011-3225-3

  18. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis processColloids and Surfaces A: Physicochemical and Engineering Aspects. 2011;377(1-3):212–216. Available from: https://doi.org/10.1016/j.colsurfa.2010.12.047

  19. Daniel MCC, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and NanotechnologyChemical Reviews. 2004;104(1):293–346. Available from: https://doi.org/10.1021/cr030698+

  20. Dhuper S, Panda D, Nayak PL. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indicaNano Trends: J Nanotech App. 2012;13(2):16–22.

  21. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, Barathmanikanth S, Kartikeyan BS, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium caseiColloids and Surfaces B: Biointerfaces. 2010;77(2):257–262. Available from: https://doi.org/10.1016/j.colsurfb.2010.02.007

  22. Kulkarni N, Muddapur U. Biosynthesis of Metal Nanoparticles: A ReviewJournal of Nanotechnology. 2014;2014:1–8. Available from: https://doi.org/10.1155/2014/510246

  23. Sahayaraj K, Rajesh S. Bionanoparticles: synthesis and antimicrobial applications, science against microbial pathogens: communicating current research and technological advances. In: AMV., ed. FORMATEX. (pp. 228-244) 2011.

  24. Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP. Rapid Biosynthesis of Silver Nanoparticles Using Cymbopogan Citratus (Lemongrass) and its Antimicrobial ActivityNano-Micro Letters. 2011;3(3):189–194. Available from: https://link.springer.com/article/10.1007/BF03353671

  25. Kumarasamyraja D, Jeganathan NS. Green synthesis of silver nanoparticles using aqueous extract of acalypha indica and its antimicrobial activityInt J Pharm Biol Sci. 2013;4(3):469–476.

  26. Kumar S, Daimary RM, Swargiary M, Brahma A, Kumar S, Singh M. Biosynthesis of silver nanoparticles usingPremna herbacealeaf extract and evaluation of its antimicrobial activity against bacteria causing dysenteryInt. J. Pharm Biol. Sci. 2013;2013(4):378–384.

  27. Gondwal M, Pant GJN. Biological evaluation and green synthesis of silver nanoparticles using aqueous extract ofCalotropis proceraInt. J. Pharm Biol. Sci. 2013;2013(4):635–643.

  28. Rout A, Jena PK, Parida UK, Bindhani BK. Green synthesis of silver nanoparticles using leaves extract ofCentella asiaticaL. For studies against human pathogensInt. J. Pharm Biol. Sci. 2013;2013(4):661–674.

  29. Thombre R, Parekh F, Patil N. Green synthesis of silver nanoparticles using seed extract ofArgyreia nervosaInt. J. Pharm Biol. Sci. 2014;2014(1):114–119.

  30. Sunita D, Tambhale D, Parag V, Adhyapak A. Facile green synthesis of silver nanoparticles using Psoralea corylifolia. Seed extract and their in-vitro antimicrobial activitiesInt. J. Pharm Biol. Sci. 2014;2014(1):457–467.

  31. Narayanan KB, Park HH. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogensEuropean Journal of Plant Pathology. 2014;140(2):185–192. Available from: https://doi.org/10.1007/s10658-014-0399-4

  32. Kumar AS, Ravi S, Kathiravan V. Green synthesis of silver nanoparticles and their structural and optical propertiesIntJ Curr Res. 2013;(5) 3238–3240.

  33. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, et al. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L. Molecules. 2011;16(8):6667–6676. Available from: https://doi.org/10.3390/molecules16086667

  34. Kathiravan V, Ravi S, Ashokkumar S. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activitySpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;130:116–121. Available from: https://doi.org/10.1016/j.saa.2014.03.107

  35. Rupiasih NN, Aher A, Gosavi S, Vidyasagar PB. Green Synthesis of Silver Nanoparticles Using Latex Extract of Thevetia Peruviana: A Novel Approach Towards Poisonous Plant UtilizationRecent Trends in Physics of Material Science and Technology. 2015;423:1–10. Available from: https://link.springer.com/chapter/10.1007/978-981-287-128-2_1

  36. Rajakumar G, Rahuman AA. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectorsActa Tropica. 2011;118(3):196–203. Available from: https://doi.org/10.1016/j.actatropica.2011.03.003

  37. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, et al. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectorsParasitology Research. 2011;108(3):693–702. Available from: https://doi.org/10.1007/s00436-010-2115-4

  38. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogensColloids and Surfaces B: Biointerfaces. 2010;76(1):50–56.

  39. Nakkala JR, Mata R, Gupta AK, Sadras SR. Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extractEuropean Journal of Medicinal Chemistry. 2014;85:784–794. Available from: https://doi.org/10.1016/j.ejmech.2014.08.024

  40. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant ExtractBiotechnology Progress. 2006;22(2):577–583. Available from: https://doi.org/10.1021/bp0501423

  41. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activitySpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;79(3):594–598. Available from: https://doi.org/10.1016/j.saa.2011.03.040

  42. Kesharwani J, Yoon KY, Hwang J, Rai M. Phytofabrication of Silver Nanoparticles by Leaf Extract of <I>Datura metel</I>: Hypothetical Mechanism Involved in SynthesisJournal of Bionanoscience. 2009;3(1):39–44.

  43. Gnanajobitha G, Paulkumar K, Vanaja M, Rajeshkumar S, Malarkodi C, Annadurai G, et al. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacyJournal of Nanostructure in Chemistry. 2013;3(1):1–6.

  44. Jain D, Daima HK, Kachhwaha S, Kothari S. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activitiesDig. J. Nanomater. Biostruct. 2009;4:557–563.

  45. Elavazhagan T, Elavazhagan T. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticlesInternational Journal of Nanomedicine. 2011;6:1265. Available from: https://doi.org/10.2147/ijn.s18347

  46. Dubey M, Bhadauria S, Kushwah B. Green synthesis of nanosilver particles from extract ofEucalyptus hybrida( safeda) leafJ. Nanomater. Biostruct. 2009;4:537–543.

  47. Veerasamy R, Xin TZ, Gunasagaran STFW, Xiang TFW, Yang EFC, Jeyakumar N, et al. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activitiesJournal of Saudi Chemical Society. 2011;15(2):113–120. Available from: https://doi.org/10.1016/j.jscs.2010.06.004

  48. Prasad T, Elumalai EK. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activityAsian Pacific Journal of Tropical Biomedicine. 2011;1(6):439–442. Available from: https://doi.org/10.1016%2FS2221-1691(11)60096-8

  49. Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticlesColloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;368(1-3):58–63. Available from: https://doi.org/10.1016/j.colsurfa.2010.07.024

  50. Mondal S, Roy N, Laskar RA, Sk I, Basu S, Mandal D, et al. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leavesColloids and Surfaces B: Biointerfaces. 2011;82(2):497–504. Available from: https://doi.org/10.1016/j.colsurfb.2010.10.007

  51. Vijayaraghavan K, Nalini SPK, Prakash NU, Madhankumar D. One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferumColloids and Surfaces B: Biointerfaces. 2012;94:114–117. Available from: https://doi.org/10.1016/j.colsurfb.2012.01.026

  52. Gogoi SJ. Green synthesis of silver nanoparticles from leaves extract of ethnomedicinal plants Pogostemon benghalensis (B) OKtzAdv Appl Sci Res. 2013;(4) 274–278.

  53. Firdhouse MJ, Lalitha P. Green synthesis of silver nanoparticles using the aqueous extract of Portulaca oleracea(L) Asian J. Pharm Clin. Res. 2012;2012(1):92–94.

  54. Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperatureSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;134:310–315. Available from: https://doi.org/10.1016/j.saa.2014.06.046

  55. Mariselvam RJA, Ranjitsingh AJA, Nanthini AUR, Kalirajan K, Padmalatha CM, Selvakumar PM. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activitySpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;129:537–541. Available from: https://doi.org/10.1016/j.saa.2014.03.066

  56. Sadeghi B, Rostami A, Momeni SS. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activitySpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;134:326–332. Available from: https://doi.org/10.1016/j.saa.2014.05.078

  57. Nabikhan A, Kandasamy K, Raj AM, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surfaces B: Biointerfaces. 2010;79(2):488–493. Available from: https://doi.org/10.1016/j.colsurfb.2010.05.018

  58. QS, XC, JL, MZ, ZC, Yu CP. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activityColloids and Surfaces A: Physicochemical and Engineering Aspects . 2014;444:226–257. Available from: https://doi.org/10.1016/j.colsurfa.2013.12.065

  59. Ulug B, Turkdemir MH, Cicek A, Mete A. Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extractSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;135:153–161. Available from: https://doi.org/10.1016/j.saa.2014.06.142

  60. Geeta N, Geetha T, Manonmani P, Thiyagarajan M. Green synthesis of silver nanaoparticles using Cymbopogan citratus (DC) Stapf. Exract and its antibacterial activityAus. J. Basic Appl. Sci. 2014;2014(3):324–355.

  61. Ahamed M, Khan MAM, Siddiqui MKJ, Alsalhi MS, Alrokayan SA. Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticlesPhysica E: Low-dimensional Systems and Nanostructures. 2011;43(6):1266–1271. Available from: https://doi.org/10.1016/j.physe.2011.02.014

  62. Veeraputhiran V. Bio-catalytic synthesis of silver nanoparticlesInt. J. Chem. Tech. Res. 2013;5(5):2555–2562.

  63. Kundu S, Ghosh SK, Mandal M, Pal T. Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in micellar mediumBulletin of Materials Science. 2002;25(6):577–579.

  64. Mallick K, Witcomb M, Scurrell M. Silver nanoparticle catalysed redox reaction: An electron relay effectMaterials Chemistry and Physics. 2006;97(2-3):283–287. Available from: http://dx.doi.org/10.1016/j.matchemphys.2005.08.011

  65. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteriaJournal of Colloid and Interface Science. 2004;275(1):177–182. Available from: https://doi.org/10.1016/j.jcis.2004.02.012

  66. Xu XHNH, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ. Real-Time Probing of Membrane Transport in Living Microbial Cells Using Single Nanoparticle Optics and Living Cell ImagingBiochemistry. 2004;43(32):10400–10413. Available from: https://doi.org/10.1021/bi036231a

  67. Larguinho M, Baptista PV. Gold and silver nanoparticles for clinical diagnostics — From genomics to proteomicsJournal of Proteomics. 2012;75(10):2811–2823. Available from: https://doi.org/10.1016/j.jprot.2011.11.007

  68. Haes AJ, Duyne RPV. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver NanoparticlesJournal of the American Chemical Society. 2002;124(35):10596–10604. Available from: https://doi.org/10.1021/ja020393x

  69. Reddy NJ, Vali DN, Rani M, Rani SS. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruitMaterials Science and Engineering: C. 2014;34:115–122. Available from: https://doi.org/10.1016/j.msec.2013.08.039

  70. Asharani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human CellsACS Nano. 2009;3(2):279–290. Available from: https://doi.org/10.1021/nn800596w

  71. Goyal RN, Oyama M, Bachheti N, Singh SP. Fullerene C60 modified gold electrode and nanogold modified indium tin oxide electrode for prednisolone determinationBioelectrochemistry. 2009;74(2):272–277. Available from: https://doi.org/10.1016/j.bioelechem.2008.10.001

  72. Kerker M. The optics of colloidal silver: something old and something newJournal of Colloid and Interface Science. 1985;105(2):297–314. Available from: https://doi.org/10.1016/0021-9797(85)90304-2

  73. Sosa IO, Noguez C, Barrera RG. Optical Properties of Metal Nanoparticles with Arbitrary ShapesThe Journal of Physical Chemistry B. 2003;107(26):6269–6275. Available from: https://doi.org/10.1021/jp0274076

  74. Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticlesProcess Biochemistry. 2010;45(7):1065–1071. Available from: https://doi.org/10.1016/j.procbio.2010.03.024

  75. Niraimathi KL, Sudha V, Lavanya R, Brindha P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activitiesColloids and Surfaces B: Biointerfaces. 2013;102:288–291. Available from: https://doi.org/10.1016/j.colsurfb.2012.08.041

  76. Shume WM, Murthy HCA, Zereffa EA. A review on synthesis and characterization of Ag2O Nanoparticles for Photocatalytic applicationsJ. Chem. 2020;2020:15–30. Available from: https://doi.org/10.1155/2020/5039479

  77. Magudapatty P, Gangopadhyayrans P, Panigrahi BK, Nair KGM, Dhara S, Physica. 2001.

  78. Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environmentJournal of Nanoparticle Research. 2010;12(5):1531–1551. Available from: https://doi.org/10.1007/s11051-010-9900-y

  79. Manke A, Wang L, Rojanasakul Y. Mechanisms of Nanoparticle-Induced Oxidative Stress and ToxicityBioMed Research International. 2013;2013:1–15. Available from: https://doi.org/10.1155/2013/942916

  80. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtiiEnvironmental Science & Technology. 2008;42(23):8959–8964. Available from: https://doi.org/10.1021/es801785m

  81. Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and ApplicationsMaterials. 2013;6(6):2295–2350. Available from: https://doi.org/10.3390/ma6062295

  82. Zawadzka K, Kądzioła K, Felczak A, Wrońska N, Piwoński I, Kisielewska A, et al. Surface area or diameter – which factor really determines the antibacterial activity of silver nanoparticles grown on TiO<sub>2</sub>coatings? New J. Chem.. 2014;38(7):3275–3281. Available from: https://doi.org/10.1039/C4NJ00301B

  83. Ivask A, Elbadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al. Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic SilverACS Nano. 2014;8(1):374–386.

  84. Palza H. Antimicrobial Polymers with Metal NanoparticlesInternational Journal of Molecular Sciences. 2015;16(1):2099–2116. Available from: https://doi.org/10.3390%2Fijms16012099

Cite this article

Santosh Chikkamath, Pravin Patil, Badarinath Kulkarni. Study and Characterization of Biosynthesized Silver Nanoparticles and their
Biological Applications. Karnatak University Journal of Science 54(3), (2023), 46–57. https://doi.org/10.61649/kujos/v54i3.santosh

Views
659
Downloads
291
Citations