Karnatak University Journal of Science

Volume: 54 Issue: 3

  • Open Access
  • Original Article

Chemical Applicability of Second Ordered First and Second Gourava Indices

B Basavanagoud1,*, Goutam Veerapur1

1Department of Mathematics, Karnatak University, Dharwad 580 003, Karnataka, India

*Corresponding author email: [email protected]

 

Year: 2023, Page: 1-10, Doi: https://doi.org/10.61649/kujos/v54i3.basanagouda

Received: Aug. 10, 2022 Accepted: Feb. 22, 2023 Published: Nov. 1, 2023

Abstract

In this note, we introduce the higher-ordered first and second Gourava indices of a molecular graph. In particular, we compute the second ordered first and second Gourava indices of some standard class of graphs and line graph of subdivision graph of 2D-lattice, nanotube and nanotorus of TU C4C8[p;q]. Furthermore, we study the linear regression analysis of the second ordered first and second Gourava indices with the entropy, acentric factor, enthalpy of vaporization and standard enthalpy of vaporization of an octane isomers.

Keywords: Topological indices; Line graph; Subdivision graph; Nanostructure

References

  1. Basavanagoud B, Patil S, Deng H. On the second order first Zagreb indexIranian J. Math. Chem. 2017;8(3):299–311. Available from: https://ijmc.kashanu.ac.ir/article_49784_8354f7dae388f810624e8396d0fc4b3a.pdf

  2. Gutman I, Trinajstic N. Total -electron energy of alternant hydrocarbonsChem. Phys. Lett. 1972;17(4):535–538.

  3. Kier LB, Murray WJ, Randiċ M, Hall LH. Molecular Connectivity V: Connectivity Series Concept Applied to DensityJournal of Pharmaceutical Sciences. 1976;65(8):1226–1230. Available from: https://doi.org/10.1002/jps.2600650824

  4. Kier LB, Hall L. Molecular Connectivity in Chemistry and Drug Research. Academic Press. 1976.

  5. Li X, Zhao H. Trees with the first three smallest and largest generalized topological indicesMATCH Commun. Math. Comput. Chem. 2004;50:57–62. Available from: https://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_57-62.pdf

  6. Nikmehr MJ, Veylaki M, Soleimani N. Some topological indices of V-phenylenic nanotube and nanotori, OptoelectronAdv. Mater. Rapid Comm. 2015;9(9):1147–1149.

  7. Kulli VR. The Gourava Indices and Coindices of GraphsAnnals of Pure and Applied Mathematics. 2014;14(1):33–38.

  8. Randić M. Characterization of molecular branchingJ. Am. Chem. Soc. 1975;97(23):6609–6615. Available from: https://doi.org/10.1021/ja00856a001

  9. Basavanagoud B, Desai VR, Patil S. (β ,α)−Connectivity Index of GraphsAppl. Math. Nonlinear Sci. 2017;2(1):21–30. Available from: https://doi.org/10.21042/AMNS.2017.1.00003

  10. Caen Dd. An upper bound on the sum of squares of degrees in a graphDiscrete Mathematics. 1998;185(1-3):245–248. Available from: https://doi.org/10.1016/S0012-365X(97)00213-6

  11. Das KC. Maximizing the sum of the squares of the degrees of a graphDiscrete Mathematics. 2004;285(1-3):57–66. Available from: https://doi.org/10.1016/j.disc.2004.04.007

  12. Kulli VR. Neighborhood indices of nanostructuresInt. J. Curr. Res. Sci. Technol. 2019;5(3):1–14.

  13. Nadeema MF, Zafar S, Zahidb Z. On topological properties of the line graphs of subdivision graphs of certain nanostructuresAppl. Math. Comput. 2016;273:125–130. Available from: https://doi.org/10.1016/j.amc.2015.10.010

  14. Nadeem MF, Zafar S, Zahid Z. On certain topological indices of the line graph of subdivision graphsApplied Mathematics and Computation. 2015;271:790–794. Available from: https://doi.org/10.1016/j.amc.2015.09.061

  15. Ranjini PS, Lokesha V, Cangül IN. On the Zagreb indices of the line graphs of the subdivision graphsApplied Mathematics and Computation. 2011;218(3):699–702. Available from: https://doi.org/10.1016/j.amc.2011.03.125

Cite this article

B Basavanagoud, Goutam Veerapur. Chemical Applicability of Second Ordered First and Second Gourava Indices. Karnatak University Journal of Science 54(3), (2023), 1–10. https://doi.org/10.61649/kujos/v54i3.basanagouda

Views
515
Downloads
242
Citations