Karnatak University Journal of Science 54(3), (2023), 1–10

Chemical Applicability of Second Ordered First and Second Gourava Indices

B Basavanagoud1,*[∗]* **, Goutam Veerapur¹**

¹*Department of Mathematics, Karnatak University, Dharwad 580 003, Karnataka, India*

1 INTRODUCTION

[jos/v54i3.basanagouda](https://doi.org/10.61649/kujos/v54i3.basanagouda)

Chemical graph theory is a branch of mathematical chemistry, which has significant impact on the improvement of the chemical sciences. In molecular graph, graph is used to represent a molecule by considering the atoms as the vertices and molecular bonds as the edges. A topological index is a molecular descriptor that is determined based on the molecular graph ofa chemical compound. For more details on topological indices refer $[1-6]$ $[1-6]$. Let $G = (V, E)$ be such a graph with V as vertex set and E as edge set and $|V| = n$, $|E| = m$. The degree $d_G(v)$ of a vertex $v \in V(G)$ is the number of edges incident to it in G.

V. R. Kulli [\[7](#page-9-1)] introduced the first and second Gourava indices of a molecular graph as follows

$$
GO_1(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(v) + (d_G(u) \cdot d_G(v))]
$$
\n(1.1)

$$
GO_{2}(G) = \sum_{uv \in E(G)} [(d_{G}(u) + d_{G}(v)) \cdot (d_{G}(u) \cdot d_{G}(v))]
$$
\n(1.2)

Motivated by the chemical applications of higher-ordered connectivity index (or Randić index)[[8](#page-9-2)], we introduce the higher-ordered first and second Gourava indices of Eqs. (1.1) and (1.2) as

$$
{}^{\alpha}GO_{1}(G) = \sum_{u_{1}u_{2}\cdots u_{\alpha+1}\in E_{\alpha}(G)}\left[d_{G}(u_{1})+d_{G}(u_{2})\cdots+d_{G}(u_{\alpha+1})\right) \quad+(d_{G}(u_{1})\cdot d_{G}(u_{2})\cdots d_{G}(u_{\alpha+1}))\right]
$$
(1.3)

Karnatak University Journal of Science 1 1 and 1 July-September 2023, Vol. 54

$$
{}^{\alpha}GO_{2}(G) = \sum_{u_{1}u_{2}\cdots u_{\alpha+1}\in E_{\alpha}(G)}\left[(d_{G}(u_{1}) + d_{G}(u_{2})\cdots + d_{G}(u_{\alpha+1})) \cdots (d_{G}(u_{1})\cdot d_{G}(u_{2})\cdots d_{G}(u_{\alpha+1})) \right].
$$
\n(1.4)

Here, E_{α} (G) denote the path of length α in a graph G, for example E_1 (G) and E_2 (G) are

path of length 1 and 2 in a graph G respectively.

By putting $\alpha = 2$ in Eqs. (1.3) and (1.4), we get the second ordered first and second Gourava indices as follows

$$
{}^{2}GO_{1}(G) = \sum_{u_{1}u_{n}u_{2} \in E_{n}(G)} [d_{G}(u_{1}) + d_{G}(u_{2}) + d_{G}(u_{3}) + (d_{G}(u_{1}) \cdot d_{G}(u_{2}) \cdot d_{G}(u_{3}))]
$$
\n(1.5)

$$
{}^{2}GO_{2}(G) = \sum_{u_{1}u_{n}u_{\mathcal{R}} \in E_{2}(G)} [(d_{G}(u_{1}) + d_{G}(u_{2}) + d_{G}(u_{3})) \cdots (d_{G}(u_{1}) \cdot d_{G}(u_{2}) \cdot d_{G}(u_{3}))]. \qquad (1.6)
$$

2 ESTIMATING THE SECOND ORDERED FIRST AND SECOND GOURAVA INDICES OF GRAPHS

In this section, we compute the second ordered first and second Gourava indices of path graph, wheel graph *Pn*, complete bipartite graph *Wn*+¹ and *Kr,^s* and r - regular graphs. Also, obtained bounds in terms of minimum vertex degree, size and order.

Remark 2.1. [\[9](#page-9-3)] For a graph *G* on *m* edges, the number of paths of length 2 in *G* is $-m + \frac{1}{2}M_1(G)$ *.*

Theorem 2.1. Let P_n be the path on $n \geq 4$ vertices. Then

 $^{2}GO_{1}(P_{n})=14n-38$

 $^{2}GO_{2}(P_{n})=48n-152.$

Proof. For a path P_n on $n \ge 4$ vertices each vertex is of degree either 1 or 2. The partition of $E_2(P_n)$ is given as follows:

$$
\begin{aligned} \left| E_{(1,2,2)} \right| &= \left| u_1 u_2 u_3 \in E_2\left(P_n \right) : d_{p_n}\left(u_1 \right) = 1, d_{p_n}\left(u_2 \right) = 2, d_{p_n}\left(u_3 \right) = 2 \right| = 2, \\ \left| E_{(2,2,2)} \right| &= \left| u_1 u_2 u_3 \in E_2\left(P_n \right) : d_{p_n}\left(u_1 \right) = 2, d_{p_n}\left(u_2 \right) = 2, d_{p_n}\left(u_3 \right) = 2 \right| = (n-4). \end{aligned}
$$

From, partition of $E_2(P_n)$ and Eqs. (1.5) and (1.6), we get the desired result.

Theorem 2.2. Let W_{n+1} be the wheel on $n \geq 4$ vertices. Then

$$
{}^{2}\text{GO}_{1}(W_{n+1}) = \frac{10n^{3} + 36n^{2} + 90n}{2}
$$

$$
{}^{2}\text{GO}_{2}(W_{n+1}) = \frac{9n^{4} + 81n^{3} + 162n^{2} + 486n}{2}.
$$

Proof. For a wheel W_{n+1} on $n \geq 3$ vertices each vertex is of degree either 3 or *n*. The partition of $E_2(W_{n+1})$ is given as follows:

$$
|E_{(3,n,3)}| = |u_1u_2u_3 \in E_2(W_{n+1}): d_{W_{n+1}}(u_1) = 3, d_{W_{n+1}}(u_2) = n, d_{W_{n+1}}(u_3) = 3| = \frac{n^2 + 3n}{2}
$$

$$
|E_{(3,3,3)}| = |u_1u_2u_3 \in E_2(W_{n+1}): d_{w_{n+1}}(u_1) = 3, d_{W_{n+1}}(u_2) = 3, d_{W_{n+1}}(u_3) = 3| = n
$$

From, partition of $E_2(W_{n+1})$ and Eqs. (1.5) and (1.6), we get the desired result.

Theorem 2.3. Let $K_{r,s}$ be the complete bipartite graph on $r \geq 2, s \geq 3$ vertices. Then

$$
{}^{2}GO_{1}(K_{r,s})=r\left(\begin{array}{c} s\\ 2 \end{array}\right)\left(r^{2}s+2r+s\right)+s\left(\begin{array}{c} r\\ 2 \end{array}\right)\left(s^{2}r+2s+r\right),
$$

$$
{}^{2}GO_{2}(K_{r,s})=r^{3}s\left(\begin{array}{c} s\\ 2 \end{array}\right)(2r+s)+s^{3}r\left(\begin{array}{c} r\\ 2 \end{array}\right)(2s+r).
$$

Proof. For a complete bipartite graph $K_{r,s}$ on $r \geq 2$, $s \geq 3$ vertices each vertex is of degree either 3 or $(n-1)$. The partition of $E_2(K_{r,s})$ is given as follows:

$$
|E_{(r,s,r)}| = |u_1u_2u_3 \in E_2(K_{r,s}): d_{K_{rs}}(u_1) = r, d_{K_{rs}}(u_2) = s, d_{K_{rs}}(u_3) = r| = r\begin{pmatrix} s \\ 2 \end{pmatrix},
$$

Karnatak University Journal of Science 22 2 2 July-September 2023, Vol. 54

$$
|E_{(s,r,s)}| = |u_1u_2u_3 \in E_2(K_{r,s}): d_{K_{rs}}(u_1) = s, d_{K_{rs}}(u_2) = r, d_{K_{rs}}(u_3) = s| = s\begin{pmatrix} r \\ 2 \end{pmatrix}.
$$

From, partition of $E_2(K_{r,s})$ and Eqs. (1.5) and (1.6), we get the desired result.

Theorem 2.4. Let *G* be the r - regular graph on *n* vertices

$$
{}^{2}GO_{1}(G) = \frac{nr(r-1)(r^{3}+3r)}{2}
$$

$$
{}^{2}GO_{2}(G) = \frac{3nr^{5}(r-1)}{2}.
$$

Proof. Since *G* is the r - regular graph, the path of degrees (*r*, *r*, *r*) appears $\frac{nr(r-1)}{2}$ times in *G*. Therefore by Eqs. (1.5) and (1.6), we get the required result.

From Theorem 2.4, we obtain the following results.

Corollary 2.5.If C_n is a cycle on $n \geq 3$ vertices. Then

$$
{}^{2}GO_{1}(C_{n}) = 14n
$$

$$
{}^{2}GO_{2}(C_{n}) = 48n
$$

Corollary 2.6. If K_n is a complete graph on $n \geq 4$ vertices. Then

$$
{}^{2}GO_{1}(K_{n}) = \frac{n(n-1)(n-2)(n^{3} - 3n^{2} + 6n - 4)}{2},
$$

$$
{}^{2}GO_{2}(K_{n}) = \frac{3n(n-2)(n-1)^{5}}{2}.
$$

Lemma 2.7. [[10](#page-9-4)] Let *G* be the graph with *n* vertices and *m* edges $m > 0$. Then

$$
M_1(G) \le m\left(\frac{2m}{n-1} + n - 2\right). \tag{2.1}
$$

Lemma 2.8. [[11](#page-9-5)] Let *G* be the graph with *n* vertices and *m* edges, $m > 0$. Then the equality

$$
M_1(G) = m\left(\frac{2m}{n-1} + n - 2\right).
$$

holds if and only if *G* is isomorphic to star graph S_n or K_n or $K_{n-1} \cup K_1$.

Theorem 2.9. Let *G* be a graph of order *n* and size $m > 0$. Then

²
$$
GO_1(G) \le (n^3 - 3n^2 + 6n - 4) \cdot m \left(\frac{m}{n-1} + \frac{n-4}{2}\right)
$$

Equality holds if and only if *G* is isomorphic to *Kn.*

Proof: By using Eqn. (1.5)

$$
{}^{2}GO_{1}(G) = \sum_{u_{1}u_{n}u_{2} \in E_{n}(G)} [d_{G}(u_{1}) + d_{G}(u_{2}) + d_{G}(u_{3})
$$

+ $(d_{G}(u_{1}) \cdot d_{G}(u_{2}) \cdot d_{G}(u_{3}))]$

$$
\leq \sum_{u_{1}u_{n}u_{2} \in E_{n}(G)} (n^{3} - 3n^{2} + 6n - 4)
$$

= $(n^{3} - 3n^{2} + 6n - 4) \left(\frac{1}{2}M_{1}(G) - m\right)$

Karnatak University Journal of Science 3 3 3 July-September 2023, Vol. 54

By Eqn. (2.1) we get

$$
\leq (n^3 - 3n^2 + 6n - 4) \left(\frac{1}{2} m \left(\frac{2m}{n-1} + n - 2 \right) - m \right)
$$

= $(n^3 - 3n^2 + 6n - 4) \cdot m \left(\frac{m}{n-1} + \frac{n-4}{2} \right).$

Equality holds if and only if *G* is isomorphic to *Kn*.

Theorem 2.10. Let *G* be a graph of order *n* and size *m*. Then

$$
{}^{2}GO_{2}(G) \leq 3m(n-1)^{4} \left(\frac{m}{n-1} + \frac{n-4}{2} \right).
$$

Equality holds if and only if *G* is isomorphic to *Kn*.

Proof. The Proof follows exactly as mentioned in the Proof of Theorem 2.9. **Lemma 2.11.** [[11](#page-9-5)] Let *G* be a graph of order *n* and size *m*. Then

$$
{}^{2}GO_{2}(G) \leq 3m(n-1)^{4} \left(\frac{m}{n-1} + \frac{n-4}{2} \right).
$$

and the equality holds if and only if the difference of the degrees of any two vertices of graph *G* is at most one. **Theorem 2.12.** Let *G* be a graph of order *n*, size *m* with minimum vertex degree δ. Then

$$
{}^{2}GO_{1}(G) \geq 2mp\delta \left(3+\delta^{2}\right)-\frac{pn\delta \left(3+\delta^{2}\right)\left(p+1\right)}{2} \text{ where } p=\left\lfloor \frac{2m}{n} \right\rfloor
$$

Equality holds if and only if *G* is a regular graph.

Proof: By using Eqn. (1.5)

$$
{}^{2}GO_{1}(G) = \sum_{u_{1}u_{n}u_{\Omega} \in E_{n}(G)} [d_{G}(u_{1}) + d_{G}(u_{2}) + d_{G}(u_{3})
$$

+ $(d_{G}(u_{1}) \cdot d_{G}(u_{2}) \cdot d_{G}(u_{3}))]$

$$
\geq \sum_{u_{1}u_{n}u_{2} \in E_{n}(G)} (3\delta + \delta^{3})
$$

= $\delta (3 + \delta^{2}) \left(-m + \frac{M_{1}(G)}{2} \right)$

By Lemma 2.11, we get

$$
\geq \delta (3 + \delta^2) \left(-m + m(2p + 1) - \frac{pn(1 + p)}{2} \right)
$$

= $2mp\delta (3 + \delta^2) - \frac{pn\delta (3 + \delta^2) (p + 1)}{2}$.

Equality holds if and only if *G* is a regular graph.

Theorem 2.13. Let *G* be a graph of order *n*, size *m* with minimum vertex degree δ. Then

²GO₂(G)
$$
\geq 6mp\delta^4 - \frac{3\delta^4 pn(p+1)}{2}
$$
 where $p = \left\lfloor \frac{2m}{n} \right\rfloor$

Equality holds if and only if *G* is a regular graph.

Proof. The Proof follows exactly as mentioned in the Proof of Theorem 2.12.

Karnatak University Journal of Science $\frac{4}{4}$ July-September 2023, Vol. 54

Figure 1: (a) 2D-lattice of *TU C*₄*C*₈[4,3]; (b) *TU C*₄*C*₈[4,3]nanotube; (c) *TU C*₄*C*₈[4,3]nanotorus.

Table 1: 1: Number of vertices and edges.				
Graph	Number of vertices	Number of edges		
2D-lattices of $TUC_4C_8[p,q]$	4qp	$6qp - q - p$		
$TUC_4C_8[p,q]$ nanotube	4qp	$6qp - p$		
$TUC_4C_8[p,q]$ nanotorus	4qp	6qp		
(a)		(b)		

Figure 2: (a) Subdivision graph of 2D-lattice of *TU C*4*C*8[4*,*3]; (b) Line graph of the subdivision graph of 2D-lattice of *TU C*4*C*8[4*,*3].

3 COMPUTING THE SECOND ORDERED FIRST AND SECOND GOURAVA INDICES OF SOME FAMILIES OF GRAPHS

In this section, we take into account the graph 2D-lattice, nanotube and nanotorus of *TU* $C_4C_8[p,q]$, where p is the number of squares in a row and *q*is the number of rows of squares[[12](#page-9-6)–[15](#page-9-7)]. These graphs are shown in Figure [1](#page-4-0). The Table [1](#page-4-1) shows the vertex set and edge set.

Lemma 3.1. [[13](#page-9-8)] Let *X* be the line graph of the subdivision graph of 2D - Lattice of *TU C*₄*C*₈[4,3]. Then

$$
M_1(X) = 108pq - 38p - 38q
$$

Theorem 3.2 . Let *X* be the line graph of the subdivision graph of 2D - Lattice of TU $C_4C_8[4,3]$. Then

$$
{}^{2}GO_{1}(X) = 1296pq - 652(p+q) + 120
$$

$$
{}^{2}\text{GO}_{2}(X) = 8748pq - 4830(p+q) + 1296
$$

Proof. From the Remark 2.1 and Lemma 3.1, it is clear that, total number of paths of length 2 in *X* is 36*pq−*14*p−*14*q*. From Eqs. (1.5), (1.6) and Table [2](#page-4-2), we deduce

Karnatak University Journal of Science 5 5 5 July-September 2023, Vol. 54

$$
{}^{2}GO_{1}(X) = \sum_{u_{1}u_{n}u_{x} \in E_{n}(G)} [d_{G}(u_{1}) + d_{G}(u_{2}) + d_{G}(u_{3}) + (d_{G}(u_{1}) \cdot d_{G}(u_{2}) \cdot d_{G}(u_{3}))]
$$

\n= 8(6+8) + 4(p+q-2)(7+12) + 8(q+p-2)(8+18)
\n+ (36qp-26p-26q+16)(9+27)
\n= 1296pq-652(p+q)+120
\n{}^{2}GO_{2}(X) = \sum_{u_{1}u_{n}u_{n} \in E_{n}(G)} [(d_{G}(u_{1}) + d_{G}(u_{2}) + d_{G}(u_{3})) \cdot (d_{G}(u_{1}) \cdot d_{G}(u_{2}) \cdot d_{G}(u_{3}))]
\n= 8(6 \cdot 8) + 4(p+q-2)(7 \cdot 12) + 8(q+p-2)(8 \cdot 18)
\n+ (36qp-26p-26q+16)(9 \cdot 27)
\n= 8748pq-4830(p+q)+1296.

Figure 3: (a) Subdivision graph of of *TU C*4*C*8[4*,*3] nanotube; (b) Line graph of the subdivision graph of *TU C*4*C*8[4*,*3] of nanotube.

Lemma 3.3 . [\[13](#page-9-8)] Let *Y* be the line graph of the subdivision graph of TU $C_4C_8[4,3]$ nanotube. Then

$$
M_1(Y) = 108pq - 38p
$$

Theorem 3.4 . Let *Y* be the line graph of TU $C_4C_8[4,3]$ the subdivision graph of nanotube. Then

$$
{}^{2}GO_{1}(Y) = 1296pq - 860p + 208q,
$$

$$
{}^{2}GO_{2}(Y) = 8748pq - 5982p + 1152q.
$$

Proof. From the Remark 2.1 and Lemma 3.3, it is clear that, total number of paths of length 2 in *Y* is *36pq*. From Eqs. (1.5), (1.6) and Table [3](#page-5-0), we get the required results.

Figure 4: (a) Subdivision graph of *TU C*4*C*8[4*,*3] of nanotorus; (b) Line graph of the subdivision graph of *TU C*4*C*8[4*,*3] of nanotorus.

Karnatak University Journal of Science 6 1 and 100 models of the Muly-September 2023, Vol. 54

Theorem 3.5. Let *Z* be the line graph of the subdivision graph of *TU C*₄*C*₈[*p,q*] nanotorus. Then

$$
{}^{2}GO_{1}(Z) = 108n,
$$

$$
{}^{2}GO_{2}(Z) = 729n.
$$

Proof. The graph *Z* is 3-regular graph, by using Theorem 2.4, we obtain the desired result.

4 CHEMICAL APPLICABILITY OF THE SECOND ORDERED FIRST AND SECOND GOURAVA INDICES

In this section, we establish the linear regression analysis of the second ordered first and second Gourava indices with the entropy, acentric factor, enthalpy of vaporization and standard enthalpy of vaporization of an octane isomers.

A linear regression model with four physical characteristics based on the second ordered first and second Gourava indices is discussed in this section. Physical parameters of octane isomers, such as entropy (S), acentric factor (AF), enthalpy of vaporisation (HVAP), and standard enthalpy of vaporisation (DHVAP), have showed a strong relationship with the indices studied. The second ordered first and second Gourava indices is tested for the octane isomers, which can be found at https:/ /www.moleculardescriptors.eu/dataset.htm. First and second Gourava indices are computed and tabulated in column 6 and 7 of Table [4.](#page-7-0) The linear regression models for *S, AF, HVAP* and *DHVAP* are fitted using the least squares approach utilising data from Table [4](#page-7-0).

The fitted models for the second ordered first Gourava index ${}^{2}GO_{1}(G)$ are

$$
S = 120.66037(\pm 3.36250) - 0.12079(\pm 0.02603)^2 GO_1(G)
$$
\n(4.1)

$$
\text{Acentric Factor} = 0.4751946(\pm 0.0191537) - 0.0011054(\pm 0.0001483)^2 \text{GO}_1(G) \tag{4.2}
$$

$$
HVAP = 75.05079(\pm 1.75198) - 0.04664(\pm 0.01356)^2 GO1(G)
$$
\n(4.3)

$$
DHVAP = 10.327506(\pm 0.310790) - 0.009516(\pm 0.002406)^2 GO1(G)
$$
\n(4.4)

The fitted models for the second ordered second Gourava index ${}^{2}GO_{2}(G)$ are

$$
S = 113.670043(\pm 2.948517) - 0.016511(\pm 0.005625)^2 GO_2(G)
$$
\n(4.5)

$$
\text{Acentric Factor} = (4.176e - 01)(\pm 1.915e - 02) - (1.638e - 04)(\pm 3.654e - 05)^2 \text{GO}_2(G) \tag{4.6}
$$

$$
HVAP = 72.264706(\pm 1.425287) - 0.006203(\pm 0.002719)^2 GO_2(G)
$$
\n(4.7)

$$
DHVAP = 9.7605648(\pm 0.2621262) - 0.0012685(\pm 0.0005001)^2 GO_2(G)
$$
\n(4.8)

Alkane	S	AF	HVAP	DHVAP	$\overline{2}GO_1(G)$	${}^2GO_2(G)$
n -Octane	111.700	0.398	73.190	9.915	74	232
2-Methylheptane	109.800	0.378	70.300	9.484	88	287
3-Methylheptane	111.300	0.371	71.300	9.521	97	344
4-Methylheptane	109.300	0.372	70.910	9.483	99	364
3-Ethylhexane	109.400	0.362	71.700	9.476	109	428
2,2-Dimethylhexane	103.400	0.339	67.700	8.915	122	436
2,3 -Dimethylhexane	108.000	0.348	70.200	9.272	122	488
2,4 -Dimethylhexane	107.000	0.344	68.500	9.029	113	423
2,5 - Dimethylhexane	105.700	0.357	68.600	9.051	102	342
3,3-Dimethylhexane	104.700	0.323	68.500	8.973	142	580
3,4-Dimethylhexane	106.600	0.340	70.200	9.316	132	558
2-Methyl-3-ethylpentane	106.100	0.332	69.700	9.209	135	585
3-Methyl-3-ethylpentane	101.500	0.307	69.300	9.081	162	720
2,2,3-Trimethylpentane	101.300	0.301	67.300	8.826	167	744
2,2,4-Trimethylpentane	104.100	0.305	64.870	8.402	140	543
2,3,3-Trimethylpentane	102.100	0.293	68.100	8.897	176	807
2,3,4 - Trimethylpentane	102.400	0.317	68.370	9.014	148	651
2,2,3,3 - Trimethylpentane	93.060	0.255	66.200	8.410	144	468

Table 5: Correlation coefficient and residual standard error regression model for the ${}^{2}GO_{1}(G)$ index.

Physical Property	Absolute Value of the correlation coefficient	Residual standard error
Acentric factor	0.8811943	0.01731
Entropy	0.7574559	3.039
HVAP	0.6519765	1.584
DHVAP	0.7031612	0.2809

Table 6: Correlation coefficient and residual standard error regression model for the ${}^{2}GO_{2}(G)$ index.

Figure 5: Scatter diagram of physical properties *S*, *AF*, *HVAP* and *DHVAP* with the ²*GO*₁(*G*) index.

Figure 6: Scatter diagram of physical properties *S*, *AF*, *HVAP* and *DHVAP* with the ²*GO*2(*G*) index.

Note: The values in the brackets of equations (4.1)-(4.8), are the corresponding standard errors of the regression coefficients. Tables [5](#page-8-1) and [6](#page-8-2) and Figures 5 and 6 represents the residual standard error and correlation coefficient for the regression models of four physical properties with ²*GO*₁(*G*) and ²*GO*₂(*G*) indices. From Table [5](#page-7-1) and Figure [5,](#page-8-1) we can observe that ²*GO*₁(*G*) index correlates with the acentric factor and the good correlation coefficient $|r| = 0.8811943$. Also, the ²GO₁(G)index has correlation coefficient $|r| = 0.7574559$ with entropy, $|r| = 0.7031612$ with DHVAP and $|r| = 0.6519765$ with HVAP. From Table [6](#page-7-2) and Figure [6,](#page-8-2) we can observe that ${}^{2}GO_{2}(G)$ index correlates with the acentric factor and the correlation coefficient $|r| = 0.7462292$. Also, the ²*GO*₂(*G*) index has correlation coefficient $|r| = 0.5916016$ with entropy, $|r| = 0.5355184$ with DHVAP and $|r| = 0.4953769$ with HVAP. Among, second ordered first Gourava index ${}^{2}GO_{1}(G)$ and second ordered second Gourava index ² $GO_2(G)$, the second ordered first Gourava index ² $GO_1(G)$ has good correlation with the physical properties of octane isomers.

REFERENCES

- 1) B. Basavanagoud, S. Patil, and H. Deng, On the second order first Zagreb index, *Iranian J. Math. Chem*, 8, *3*, 299 (2017)URL [https://ijmc.kashanu.ac.ir/](https://ijmc.kashanu.ac.ir/article_49784_8354f7dae388f810624e8396d0fc4b3a.pdf) [article_49784_8354f7dae388f810624e8396d0fc4b3a.pdf](https://ijmc.kashanu.ac.ir/article_49784_8354f7dae388f810624e8396d0fc4b3a.pdf).
- 2) I. Gutman and N. Trinajstic, Total -electron energy of alternant hydrocarbons, *Chem. Phys. Lett*, 17, *4*, 535 (1972).
- 3) L. B. Kier, W. J. Murray, M. Randiċ, and L. H. Hall, Molecular Connectivity V: Connectivity Series Concept Applied to Density, *Journal of Pharmaceutical Sciences*, 65, *8*, 1226 (1976)URL [https://doi.org/10.1002/jps.2600650824.](https://doi.org/10.1002/jps.2600650824)
- 4) L. B. Kier and L. Hall, *Molecular Connectivity in Chemistry and Drug Research*, Academic Press (1976).

Karnatak University Journal of Science 19 10 minutes by 19 July-September 2023, Vol. 54

- 5) X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, *MATCH Commun. Math. Comput. Chem*, 50, 57 (2004)URL [https://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_57-62.pdf.](https://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_57-62.pdf)
- 6) M. J. Nikmehr, M. Veylaki, and N. Soleimani, Some topological indices of V-phenylenic nanotube and nanotori, Optoelectron, *Adv. Mater. Rapid Comm*, 9, *9*, 1147 (2015).
- 7) V. R. Kulli, The Gourava Indices and Coindices of Graphs, *Annals of Pure and Applied Mathematics*, 14, *1*, 33 (2014).
- 8) M. Randić, Characterization of molecular branching, *J. Am. Chem. Soc*, 97, *23*, 6609 (1975)URL [https://doi.org/10.1021/ja00856a001.](https://doi.org/10.1021/ja00856a001)
- 9) B. Basavanagoud, V. R. Desai, and S. Patil, (β ,α)*−*Connectivity Index of Graphs, *Appl. Math. Nonlinear Sci*, 2, *1*, 21 (2017)URL [https://doi.org/10.](https://doi.org/10.21042/AMNS.2017.1.00003) [21042/AMNS.2017.1.00003.](https://doi.org/10.21042/AMNS.2017.1.00003)
- 10) D. de Caen, An upper bound on the sum of squares of degrees in a graph, *Discrete Mathematics*, 185, *1-3*, 245 (1998)URL [https://doi.org/10.1016/S0012-](https://doi.org/10.1016/S0012-365X(97)00213-6) [365X\(97\)00213-6](https://doi.org/10.1016/S0012-365X(97)00213-6).
- 11) K. C. Das, Maximizing the sum of the squares of the degrees of a graph, *Discrete Mathematics*, 285, *1-3*, 57 (2004)URL [https://doi.org/10.1016/j.disc.](https://doi.org/10.1016/j.disc.2004.04.007) [2004.04.007.](https://doi.org/10.1016/j.disc.2004.04.007)
- 12) V. R. Kulli, Neighborhood indices of nanostructures, *Int. J. Curr. Res. Sci. Technol*, 5, *3*, 1 (2019).
- 13) M. F. Nadeema, S. Zafar, and Z. Zahidb, On topological properties of the line graphs of subdivision graphs of certain nanostructures, *Appl. Math. Comput*, 273, 125 (2016)URL <https://doi.org/10.1016/j.amc.2015.10.010>.
- 14) M. F. Nadeem, S. Zafar, and Z. Zahid, On certain topological indices of the line graph of subdivision graphs, *Applied Mathematics and Computation*, 271, 790 (2015)URL [https://doi.org/10.1016/j.amc.2015.09.061.](https://doi.org/10.1016/j.amc.2015.09.061)
- 15) P. S. Ranjini, V. Lokesha, and I. N. Cangül, On the Zagreb indices of the line graphs of the subdivision graphs, *Applied Mathematics and Computation*, 218, *3*, 699 (2011)URL [https://doi.org/10.1016/j.amc.2011.03.125.](https://doi.org/10.1016/j.amc.2011.03.125)