Karnatak University Journal of Science

Volume: 55 Issue: 3

  • Open Access
  • Original Article

Synthesis of Novel Quinazolines and its Application as Biomarkers for Apoptotic Cells

Atulkumar A Kamble1, Barnabas Kodasi2, Sandhya Kumari3, Guruprasad Kalthur3, Praveen K Bayannavar2, Ravindra R Kamble1,∗

 
 

1Department of Chemistry, K. L. E. Society’s G. I. Bagewadi’s Arts Science and Commerce College, Nipani, 591237, Karnataka, India.
2Department of Studies in Chemistry, Karnataka University, Dharwad, 580003, Karnataka, India.
3Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India. 


Corresponding author email: [email protected]

 
 

Year: 2024, Page: 22-28, Doi: https://doi.org/10.61649/kujos/v55i3.24.3

Received: Feb. 7, 2024 Accepted: May 3, 2024 Published: Aug. 12, 2024

Abstract

The current study provides a straightforward, simple, and efficient protocol for the microwave- assisted synthesis of a series of 2,3-dihydroquinazolinones and its affinity to bind to DNA so as to exhibit potential anticancer activity. The predominance of this method is smooth synthetic pathway, transient reaction times, facile workup, and exceptional yields. Docking studies manifested strong binding interactions with BSA enzyme (PDB ID: 3V03). The compound 6d was exceptional in binding to DNA. Compound 6d showed significant cytotoxicity and genotoxicity against Ehrlich Ascites Carcinoma (EAC) cells. UV–Vis absorption and Fluorescence studies were carried out for compound 6d showing promising results.

 
 

Keywords: 2,3-dihydroquinazolinones; Cytotoxicity; Genotoxicity; UV–Vis absorption studies; Fluorescence studies

 

 
 

References

  1. Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discoveryCurrent Opinion in Chemical Biology. 2010;14(3):347–361. Available from: https://doi.org/10.1016/j.cbpa.2010.02.018

  2. Xia Y, Yang ZY, Hour MJ, Kuo SC, Xia P, Bastow KF, et al. Antitumor Agents. Part 204:1 Synthesis and Biological Evaluation of Substituted 2-Aryl QuinazolinonesBioorganic & Medicinal Chemistry Letters. 2001;11(9):1193–1196. Available from: https://doi.org/10.1016/S0960-894X(01)00190-1

  3. Ozaki Ki, Yamada Y, Oine T, Ishizuka T, Iwasawa Y. Studies on 4(1H)-Quinazolinones. 5. Synthesis and Antiinflammatory Activity of 4(1H)-Quinazolinone DerivativesJournal of Medicinal Chemistry. 1985;28(5):568–576. Available from: https://doi.org/10.1021/jm50001a006

  4. Buchanan JG, Sable HZ. Thyagarajan BS., ed. Selective Organic Transformations. (Vol. 2, pp. 1-352) New York, USA. Wiley-Interscience. 1972.

  5. Narasimhulu M, Lee YR. Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their spirooxindole derivativesTetrahedron. 2011;67(49):9627–9634. Available from: https://doi.org/10.1016/j.tet.2011.08.018

  6. Chen J, Su W, Wu H, Liu M, Jin C. Eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones in ionic liquids or ionic liquid–water without additional catalystGreen Chemistry. 2007;9(9):972–975. Available from: https://doi.org/10.1039/B700957G

  7. Shaabani A, Maleki A, Mofakham H. Click Reaction: Highly Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-onesSynthetic Communications . 2008;38(21):3751–3759. Available from: https://doi.org/10.1080/00397910802213802

  8. Davoodnia A, Allameh S, Fakhari AR, Tavakoli-Hoseini N. Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalystChinese Chemical Letters. 2010;21(5):550–553. Available from: https://doi.org/10.1016/j.cclet.2010.01.032

  9. Wang M, Gao JJ, Song ZG, Wang L. Cerium(IV) ammonium nitrate catalyzed green synthesis of 2-substituted 2,3-dihydro- quinazolin-4(1H)-ones using a grinding techniqueChemistry of Heterocyclic Compounds . 2011;47:851–855. Available from: https://doi.org/10.1007/s10593-011-0846-5

  10. Murthy PVNS, Rambabu D, Krishna GR, Reddy CM, Prasad KRS, Rao MVB, et al. Amberlyst-15 mediated synthesis of 2-substituted 2,3-dihydroquinazolin-4(1H)-ones and their crystal structure analysisTetrahedron Letters. 2012;53(7):863–867. Available from: https://doi.org/10.1016/j.tetlet.2011.12.023

  11. Ramesh K, Karnakar K, Satish G, Kumar BSPA, Nageswar YVD. A concise aqueous phase supramolecular synthesis of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one derivativesTetrahedron Letters. 2012;53(51):6936–6939. Available from: https://doi.org/10.1016/j.tetlet.2012.10.029

  12. Shi D, Rong L, Wang J, Zhuang Q, Wang X, Hu H. Synthesis of quinazolin-4(3H)-ones and 1,2-dihydroquinazolin-4(3H)-ones with the aid of a low-valent titanium reagentTetrahedron Letters. 2003;44(15):3199–3201. Available from: https://doi.org/10.1016/S0040-4039(03)00449-0

  13. Rueping M, Antonchick AP, Sugiono E, Grenader K. Asymmetric Brønsted Acid Catalysis: Catalytic Enantioselective Synthesis of Highly Biologically Active DihydroquinazolinonesAngewandte Chemie International Edition. 2009;48(5):908–910. Available from: https://doi.org/10.1002/anie.200804770

  14. Cheng X, Vellalath S, Goddard R, List B. Direct Catalytic Asymmetric Synthesis of Cyclic Aminals from AldehydesJournal of the American Chemical Society. 2008;130(47):15786–15787. Available from: https://doi.org/10.1021/ja8071034

  15. Abdel-Jalil RJ, Voelter W, Saeed M. A novel method for the synthesis of 4(3H)-quinazolinonesTetrahedron Letters. 2004;45(17):3475–3476. Available from: https://doi.org/10.1016/j.tetlet.2004.03.003

  16. Moore JA, Sutherland GJ, Sowerby R, Kelly EG, Palermo S, Webdter W. Reactions of anthranilamide and o-aminoacetophenone with benzil and benzoinThe Journal of Organic Chemistry. 1969;34(4):887–892. Available from: https://doi.org/10.1021/jo01256a024

  17. Kamble AA, Kamble RR, Chougala LS, Kadadevarmath JS, Maidur SR, Patil PS, et al. Photophysical, Electrochemical Studies of Novel Pyrazol-4-yl-2,3-dihydroquinazolin-4(1H)-ones and Their Anticancer ActivityChemistry Select. 2017;2(23):6882–6890. Available from: https://doi.org/10.1002/slct.201700498

  18. Li M, Zhao BX. Progress of the synthesis of condensed pyrazole derivatives (from 2010 to mid-2013) European Journal of Medicinal Chemistry. 2014;85:311–340. Available from: https://doi.org/10.1016/j.ejmech.2014.07.102

  19. Kumar H, Saini D, Jain S, Jain N. Pyrazole scaffold: A remarkable tool in the development of anticancer agentsEuropean Journal of Medicinal Chemistry. 2013;70:248–258. Available from: https://doi.org/10.1016/j.ejmech.2013.10.004

  20. Khunt RC, Khedkar VM, Chawda RS, Chauhan NA, Parikh AR, Coutinho EC. Synthesis, antitubercular evaluation and 3D-QSAR study of N-phenyl-3-(4-fluorophenyl)-4-substituted pyrazole derivativesBioorganic & Medicinal Chemistry Letters. 2012;22(1):666–678. Available from: https://doi.org/10.1016/j.bmcl.2011.10.059

  21. Pathak RB, Chovatia PT, Parekh HH. Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivativesBioorganic & Medicinal Chemistry Letters. 2012;22(15):5129–5133. Available from: https://doi.org/10.1016/j.bmcl.2012.05.063

  22. Daidone G, Maggio B, Raffa D, Plescia S, Bajardi ML, Caruso A, et al. Synthesis and pharmacological study of ethyl 1-methyl-5-[2-substituted-4-oxo-3(4H)-quinazolinyl]-1H-pyrazole-4-acetatesEuropean Journal of Medicinal Chemistry. 1994;29(9):707–711. Available from: https://doi.org/10.1016/0223-5234(94)90033-7

  23. Gokhan-Kelekci N, Yabanoglu S, Kupeli E, Salgin U, Ozgen O, Ucar G, et al. A new therapeutic approach in Alzheimer disease: some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesicsBioorganic & Medicinal Chemistry. 2007;15(17):5775–5786. Available from: https://doi.org/10.1016/j.bmc.2007.06.004

  24. Vijesh AM, Isloor AM, Shetty P, Sundershan S, Fun HK. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agentsEuropean Journal of Medicinal Chemistry. 2013;62:410–415. Available from: https://doi.org/10.1016/j.ejmech.2012.12.057

  25. Malladi S, Isloor AM, Peethambar SK, Ganesh BM, Goud PSK. Synthesis and antimicrobial activity of some new pyrazole containing cyanopyridone derivatives Der Pharma Chemica. 2012;4(1):43–53. Available from: https://www.derpharmachemica.com/pharma-chemica/synthesis-and-antimicrobial-activity-of-some-new-pyrazolecontaining-cyanopyridone-derivatives.pdf

  26. B’Bhatt H, Sharma S. Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivativesArabian Journal of Chemistry. 2017;10(Supplement 2):S1590–S1596. Available from: https://doi.org/10.1016/j.arabjc.2013.05.029

  27. Koca I, Ozgur A, Coskun KA, Tutar Y. Synthesis and anticancer activity of acyl thioureas bearing pyrazole moietyBioorganic & Medicinal Chemistry. 2013;21(13):3859–3865. Available from: https://doi.org/10.1016/j.bmc.2013.04.021

  28. Dawood KM, Eldebss TMA, El-Zahabi HSA, Yousef MH, Metz P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agentsEuropean Journal of Medicinal Chemistry. 2013;70:740–749. Available from: https://doi.org/10.1016/j.ejmech.2013.10.042

  29. Abdel-Aziz M, Abuo-Rahma GEA, Hassan AA. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activitiesEuropean Journal of Medicinal Chemistry. 2009;44(9):3480–3487. Available from: https://doi.org/10.1016/j.ejmech.2009.01.032

  30. Kaushik D, Khan SA, Chawla G, Kumar S. N’-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene] 2/4-substituted hydrazides: Synthesis and anticonvulsant activityEuropean Journal of Medicinal Chemistry. 2010;45(9):3943–3949. Available from: https://doi.org/10.1016/j.ejmech.2010.05.049

  31. Raffa D, Maggio B, Raimondi MV, Cascioferro S, Plescia F, Cancemi G, et al. Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycleEuropean Journal of Medicinal Chemistry. 2015;97:732–746. Available from: https://doi.org/10.1016/j.ejmech.2014.12.023

  32. Khan MF, Alam MM, Verma G, Akhtar W, Akhter M, Shaquiquzzaman M. The therapeutic voyage of pyrazole and its analogs: A reviewEuropean Journal of Medicinal Chemistry. 2016;120:170–201. Available from: https://doi.org/10.1016/j.ejmech.2016.04.077

  33. Hannon MJ. Supramolecular DNA recognitionChemical Society Reviews. 2007;36(2):280–295. Available from: https://pubs.rsc.org/en/content/articlelanding/2007/cs/b606046n

  34. Rescifina A, Zagni C, Varrica MG, Pistara V, Corsaro A. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modelingEuropean Journal of Medicinal Chemistry. 2014;74:95–115. Available from: https://doi.org/10.1016/j.ejmech.2013.11.029

  35. Bi S, Zhang H, Qiao C, Sun Y, Liu C. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic methodSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2008;69(1):123–129. Available from: https://doi.org/10.1016/j.saa.2007.03.017

  36. Rescifina A, Zagni C, Varrica MG, Pistara V, Corsaro A. Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modelingEuropean Journal of Medicinal Chemistry. 2014;74:95–115. Available from: https://doi.org/10.1016/j.ejmech.2013.11.029

  37. Carter DC, Ho JX. Structure of Serum AlbuminAdvances in Protein Chemistry. 1994;45:153–203. Available from: https://doi.org/10.1016/S0065-3233(08)60640-3

  38. Bai Y, Sun S, Zhang H, Zhao T. Investigation of interaction between bovine serum albumin and drugs by fluorescence spectrometryAnalytical Methods. 2013;5(24):7036–7041. Available from: https://pubs.rsc.org/en/content/articlelanding/2013/ay/c3ay41008k

  39. Esteghamat-Panah R, Farrokhpour H, Hadadzadeh H, Abyar F, Rudbari HA. An experimental and quantum chemical study on the non-covalent interactions of a cyclometallated Rh(iii) complex with DNA and BSARSC Advances. 2016;6(28). Available from: https://doi.org/10.1039/C5RA24540K

  40. Haribabu J, Jeyalakshmi K, Arun Y, Bhuvanesh NSP, Perumal PT, Karvembua R. Synthesis, DNA/protein binding, molecular docking, DNA cleavage and in vitro anticancer activity of nickel(II) bis(thiosemicarbazone) complexesRSC Advances. 2015;5(57):46031–46049. Available from: https://doi.org/10.1039/C5RA04498G

  41. Wilson WD, Tanious FA, Barton HG, Jones RL, Fox K, Wydra RL, et al. DNA sequence dependent binding modes of 4',6-diamidino-2-phenylindole (DAPI) Biochemistry. 1990;29(36):8452–8461. Available from: https://doi.org/10.1021/bi00488a036

  42. Kapuscinski J. DAPI: a DNA-specific fluorescent probeBiotechnic & Histochemistry. 1995;70(5):220–233. Available from: https://doi.org/10.3109/10520299509108199

  43. Mahajan K, Swami M, Singh RV. Microwave synthesis, spectral studies, antimicrobial approach, and coordination behavior of antimony(III) and bismuth(III) compounds with benzothiazolineRussian Journal of Coordination Chemistry. 2009;35:179–185. Available from: https://doi.org/10.1134/S1070328409030038

  44. Mohanan K, Kumari BS, Rijulal G. Microwave assisted synthesis, spectroscopic, thermal, and antifungal studies of some lanthanide(III) complexes with a heterocyclic bishydrazoneJournal of Rare Earths. 2008;26(1):16–21. Available from: https://doi.org/10.1016/S1002-0721(08)60028-9

  45. Garg R, Saini MK, Fahmi N, Singh RV. Spectroscopic and Biochemical Studies of Some Manganese(II), Oxovanadium(V) and Dioxomolybdenum(VI) Complexes S/O and N Donor Agents Synthesized under Microwave ConditionsTransition Metal Chemistry. 2006;31:362–367. Available from: https://doi.org/10.1007/s11243-005-0001-1

  46. Sharma K, Singh R, Fahmi N, Singh RV. Microwave assisted synthesis, characterization and biological evaluation of palladium and platinum complexes with azomethinesSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2010;75(1):422–427. Available from: https://doi.org/10.1016/j.saa.2009.10.052

  47. Vasudevan A. Microwave-Assisted Orgainc Synthesis – An Enabling Technology with Disruptive Potential. Drug Discovery World. Available from: https://www.ddw-online.com/microwave-assisted-orgainc-synthesis-an-enabling-technology-with-disruptive-potential-1204-200810/

  48. Kidwai M. Dry media reactionsPure and Applied Chemistry. 2001;73(1):147–151. Available from: https://publications.iupac.org/pac/2001/7301/7301x0147.html

  49. DiMasi JA, Hansen RW, HGG. The price of innovation: new estimates of drug development costsJournal of Health Economics. 2003;22(2):151–185. Available from: https://doi.org/10.1016/S0167-6296(02)00126-1

  50. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applicationsNature Reviews Drug Discovery. 2004;3:935–949 . Available from: https://doi.org/10.1038/nrd1549

  51. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic chargesTetrahedron. 1980;36(22):3219–3228. Available from: https://doi.org/10.1016/0040-4020(80)80168-2

  52. Desai V, Desai S, Gaonkar SN, Palyekar U, Joshi SD, Dixit SK. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: Synthesis, molecular docking and biological evaluationBioorganic & Medicinal Chemistry Letters. 2017;27(10):2174–2180. Available from: https://doi.org/10.1016/j.bmcl.2017.03.059

  53. Yoon SJ, Chung JW, Gierschner J, Kim KS, Choi MG, Kim D, et al. Multistimuli Two-Color Luminescence Switching via Different Slip-Stacking of Highly Fluorescent Molecular SheetsJournal of the American Chemical Society. 2010;132(39):13675–13683. Available from: https://doi.org/10.1021/ja1044665

  54. Sagara Y, Yamane S, Mitani M, Weder C, Kato T. Mechanoresponsive Luminescent Molecular Assemblies: An Emerging Class of MaterialsAdvanced Materials. 2016;28(6):1073–1095. Available from: https://doi.org/10.1002/adma.201502589

  55. Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Organic chemistry: a digital fluorescent molecular photoswitchNature. 2002;420(6917):759–760. Available from: https://doi.org/10.1038/420759a

  56. Farinola GM, Ragni R. Electroluminescent materials for white organic light emitting diodesChemical Society Reviews. 2011;40(7):3467–3482. Available from: https://doi.org/10.1039/C0CS00204F

  57. Ivashenko O, Herpt JTv, Feringa BL, Rudolf P, Browne WR. Electrochemical Write and Read Functionality through Oxidative Dimerization of Spiropyran Self-Assembled Monolayers on GoldThe Journal of Physical Chemistry C. 2013;117(36):18567–18577. Available from: https://doi.org/10.1021/jp406458a

  58. Skyrianou KC, Psycharis V, Raptopoulou CP, Kessissoglou DP, Psomas G. Nickel–quinolones interaction. Part 4 — Structure and biological evaluation of nickel(II)–enrofloxacin complexes compared to zinc(II) analoguesJournal of Inorganic Biochemistry. 2011;105(1):63–74. Available from: https://doi.org/10.1016/j.jinorgbio.2010.09.007

  59. Ray A, Seth BK, Pal U, Basu S. Nickel(II)-Schiff base complex recognizing domain II of bovine and human serum albumin: Spectroscopic and docking studiesSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;92:164–174. Available from: https://doi.org/10.1016/j.saa.2012.02.060

  60. Toneatto J, Arguello GA. New advances in the study on the interaction of [Cr(phen)2(dppz)]3+ complex with biological models; association to transporting proteinsJournal of Inorganic Biochemistry. 2011;105(5):645–651. Available from: https://doi.org/10.1016/j.jinorgbio.2010.10.018

 
 

Cite this article

Atulkumar A Kamble, Barnabas Kodasi, Sandhya Kumari, Guruprasad Kalthur, Praveen K Bayannavar, Ravindra R Kamble. Synthesis of Novel Quinazolines and its Application as Biomarkers for Apoptotic Cells. Karnatak University Journal of Science 55(3), (2024), 22–28

 
 
Views
42
Downloads
16
Citations