Karnatak University Journal of Science

Volume: 54 Issue: 3

  • Open Access
  • Original Article

Physicochemical and Phytochemical Assay of Rediscovered Wissadula contracta (Link) R. E. Fries from Karnataka, India

Anitha Puranik1, Tarikere C Taranath1,*

1P. G. Department of Studies in Botany, Karnatak University, Pavate Nagar, Karnataka, Dharwad - 580003, India

*Corresponding author email: [email protected]

 

Year: 2023, Page: 39-45, Doi: https://doi.org/10.61649/kujos/v54i3.anitha

Received: Sept. 20, 2022 Accepted: Feb. 22, 2023 Published: Nov. 9, 2023

Abstract

Wissadula contracta (Link) R.E.Fr. is a perennial undershrub of Malvaceae, with a native range from Mexico to tropical America and is naturalized in Dharwad, Karnataka, India. The current investigation was carried out to analyse the presence of medicinally useful bioactive constituents of Wissadula contracta leaf extract using selected physicochemical parameters, preliminary qualitative analysis and Gas Chromatography coupled with Mass Spectroscopy. From the results, it is evident that the aqueous and ethanol extracts have high soluble extractive values, indicating the richness of secondary metabolites. A foaming index of 1000 specifies saponin content, and the swelling index of 38 was due to significant mucilage in the crude sample. Qualitative analysis revealed the presence of all secondary metabolites tested namely, phenolic compounds, saponins, flavonoids, tannins, fixed oil and fats, triterpenoids, and steroids except alkaloids. Additionally, the extensive profile of twenty-eight phytoconstituents in the sequential methanol extract was revealed by the GC-MS analysis, supporting the therapeutic potential of Wissadula contracta.

Keywords: Physicochemical parameters, Phytochemical screening, GCMS, Wissadula contracta, Therapeutic value

References

  1. PubChem Compound Summary for CID. 2022;73170.

  2. Kolar MJ, Konduri S, Chang T, Wang H, Mcnerlin C, Ohlsson L, et al. Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammalsJournal of Biological Chemistry. 2019;294(27):10698–10707. Available from: https://doi.org/10.1074/jbc.ra118.006956

  3. Sevcíková Z, Pour M, Novák D, Vacek J. Chemical properties and biological activities of cyclopentenediones: a review. Mini Reviews in Medicinal Chemistry. 2014;14(4):322–331. Available from: https://doi.org/10.2174/1389557514666140306130207

  4. Jaiganesh S, Anand S, Sangeetha KN, Shilpa K. Biological evaluation of (3β)-STIGMAST-5-EN-3-OL as potent anti-diabetic agent in regulating glucose transport using in vitro modelInternational Journal of Diabetes Mellitus. 2010;2(2):101–109. Available from: https://doi.org/10.1016/j.ijdm.2009.12.013

  5. Dr.

  6. El-Demerdash E. Anti-inflammatory and antifibrotic effects of methyl palmitateToxicology and Applied Pharmacology. 2011;254(3):238–244. Available from: https://doi.org/10.1016/j.taap.2011.04.016

  7. Bhardwaj M, Sali VK, Mani S&HR, Vasanthi HR. Neophytadiene from Turbinaria ornata Suppresses LPS-Induced Inflammatory Response in RAW 264.7 Macrophages and Sprague Dawley RatsInflammation. 2020;43(3):937–950. Available from: https://doi.org/10.1007/s10753-020-01179-z

  8. Silva ATM, Pereira VV, Almeida LTGD, Ruiz ALTG, Carvalho JED, Dias DF, et al. Synthesis and Biological Activity of Borneol EstersSynthesis and Biological Activity of Borneol Esters. 2016;8(3):1020–1031. Available from: http://dx.doi.org/10.5935/1984-6835.20160073

  9. Bowers WS, Thompson MJ, Uebel EC. Juvenile and gonadotropic hormone activity of 10,11-epoxyfarnesenic acid methyl esterLife Sciences. 1965;4(23):2323–2331. Available from: https://doi.org/10.1016/0024-3205(65)90256-0

  10. 2022.

  11. Dhanjal DS, Bhardwaj S, Chopra C, Singh R, Patocka J, Plucar B, et al. Millennium Nutrient N,N-Dimethylglycine (DMG) and its Effectiveness in Autism Spectrum DisordersCurrent Medicinal Chemistry. 2022;29(15):2632–2651. Available from: https://doi.org/10.2174/0929867328666211125091811

  12. Kunnur BS, Kotresha K, Annigeri GB. On the collection of Wissadula contracta (Malvaceae) from KarnatakaIndia. Rheedea. 2009;12(1&@):67–68. Available from: https://dx.doi.org/10.22244/rheedea.2009.19.01.17

  13. Master MT, M. Hooker JD., ed. Flora of British India. (Vol. 1, pp. 317-353) 1874.

  14. Paul TK, Nayar MP, Malvaceae. Nayar MP, Thothathri K, Sanjappa M., eds. Fascicles of Flora of India. Fascicle 19 Botanical Survey of India. (pp. 64-233) 1988.

  15. Bovini MG, Baumgratz JFA. Taxonomic revision of Wissadula (Malvoideae, Malvaceae) in BrazilPhytotaxa. 2016;243(3):201. Available from: https://doi.org/10.11646/phytotaxa.243.3.1

  16. Hasan MN, Azam NK, Ahmed MN, Hirashima A. A randomized ethnomedicinal survey of snakebite treatment in southwestern parts of BangladeshJournal of Traditional and Complementary Medicine. 2016;6(4):337–342. Available from: https://doi.org/10.1016/j.jtcme.2015.03.007

  17. Teles YC, Horta CC, De FM, Agra W, Siheri M, Boyd JO, et al. New Sulphated Flavonoids from Wissadula periplocifolia (L.) C. Presl (Malvaceae). Molecules. 2016;20(11):20161–20172. Available from: https://doi.org/10.3390%2Fmolecules201119685

  18. Dinda B, Das N, Dinda S, Dinda M, Silsarma I. The genus Sida L. – A traditional medicine: Its ethnopharmacological, phytochemical and pharmacological data for commercial exploitation in herbal drugs industryJournal of Ethnopharmacology. 2015;176(176):135–176. Available from: https://doi.org/10.1016/j.jep.2015.10.027

  19. Harborne JB. Phytochemical Methods; A guide to modern techniques of plant analysis. (pp. 182-189) London. Chapman & Hall. 1973.

  20. Government of India, Ministry of Health and Family Welfare. The Ayurvedic pharmacopoeia of India, 1 (1). (Vol. 3, pp. 233-251) 2001.

  21. Patwekar SL, Suryawansi AB, Gaikwad MS, Pedewad SR, Potulwar AP. Standardization of herbal drugs: an overviewPharma Innov J. 2015;4(9):100–104.

  22. Kokate CK. Practical pharmacognosy. (p. 111) Vallabh Prakashan. 2005.

  23. World Health Organization. Quality control methods for medicinal plants. 2002.

  24. Hites RA. Development of Gas Chromatographic Mass SpectrometryAnal Chem. 2016;88(14):6955–6961. Available from: https://doi.org/10.1021/acs.analchem.6b01628

  25. Ankad GM, Pai PR, Upadhyaya V, Hurkadale PJ, Hegde V. Pharmacognostic evaluation of Achyranthes coynei: LeafEgyptian Journal of Basic and Applied Sciences. 2015;2(1):25–31. Available from: https://doi.org/10.1016/j.ejbas.2014.12.002

  26. Pallavi S, Arti T, Pravin P, Shubhra S, Vineeta I, Ashal M, et al. Saponins: Extraction, bio-medicinal properties and way forward to anti-viral representativesFood and Chemical Toxicology. 2021;150(112075). Available from: https://doi.org/10.1016/j.fct.2021.112075

  27. Tagousop CN, Tamokou JDD, Kengne IC, Ngnokam D, Voutquenne-Nazabadioko L. Antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with antibiotics against pathogenic phenotypesChemistry Central Journal. 2018;12(1):97. Available from: https://doi.org/10.1186/s13065-018-0466-6

  28. Osbourn A, Goss RJM, Field RA. The saponins – polar isoprenoids with important and diverse biological activitiesNatural Product Reports. 2011;28(7):1261.

  29. Morton JF. Mucilaginous plants and their uses in medicineJournal of Ethnopharmacology. 1990;29(3):245–266. Available from: https://doi.org/10.1016/0378-8741(90)90036-S

  30. Heydarirad G, Choopani R, Mehdi P, Jafari JM. Mucilage Used in Traditional Persian Medicine PracticeIranian journal of medical sciences. 2016;41(3 supp):S41. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc5103549/

  31. Haile TG, Sibhat GG, Molla F. Physicochemical Characterization of Grewia ferruginea Hochst. ex A. Rich Mucilage for Potential Use as a Pharmaceutical ExcipientBioMed Research International. 2020;2020(4094350):1–10. Available from: https://doi.org/10.1155/2020/4094350

  32. Negi JS, Singh P, Rawat B. Chemical Constituents and Biological Importance of Swertia: A ReviewCurrent Research in Chemistry. 2010;3(1):1–15. Available from: https://doi.org/10.3923/crc.2011.1.15

  33. Rachael MK, Rajiv P, Dhanasekaran S. Screening for phytochemicals and antimicrobial activity of aqueous extract of Tridax procumbensInternational Journal of Research in Pharmaceutical Sciences. 2020;11(4):5787–5790. Available from: https://ijrps.com/index.php/home/article/view/1214

  34. Carvalho APAd, Conte-Junior CA. Health benefits of phytochemicals from Brazilian native foods and plants: Antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders controlFood Science & Technology. 2021;111:534–548. Available from: https://doi.org/10.1016/j.tifs.2021.03.006

  35. Benavente-García O, Castillo J, Marin FR, Ortuño A, Río JAD. Uses and properties of citrus flavonoidsJ Agric Food Chem. 1997;45(12):4505–4515. Available from: https://doi.org/10.1021/jf970373s

  36. Rabi T, Bishayee A. Terpenoids and breast cancer chemopreventionBreast Cancer Research and Treatment. 2009;115(2):223–239. Available from: https://doi.org/10.1007/s10549-008-0118-y

  37. Wagner KH, Elmadfa I. Biological relevance of terpenoids: Overview focusing on mono-di and tetraterpenesAnn Nutr Metab. 2003;47(3-4):95–96. Available from: https://doi.org/10.1159/000070030

  38. Lokesh R, Manasvi V, Praveena LB. Antibacterial and Antioxidant Activity of Saponin from Abutilon indicum LeavesAsian J Pharm Clin Res. 2016;9:344–347.

  39. Kovács A, Vasas A, Hohmann J. Natural phenanthrenes and their biological activityPhytochemistry. 2008;69(5):1084–1100. Available from: https://doi.org/10.1016/j.phytochem.2007.12.005

  40. Kwofie A, Gupta M. Phenanthrene: A versatile molecule; A review. 2021;21:368–378.

  41. Ostrowska K. Coumarin-piperazine derivatives as biologically active compoundsSaudi Pharmaceutical Journal. 2020;28(2):220–232. Available from: https://doi.org/10.1016/j.jsps.2019.11.025

  42. National Center for Biotechnology Information. PubChem Compound Summary for CID 129834673, 4-Vinylguaiacol-glycolaldehyde. 2022.

  43. Malla R, Kumari S, Deepak KGKMM, Gavara S, Gugalavath P, Rokkam. Terpenoids as Potential Targeted Therapeutics of Pancreatic Cancer: Current Advances and Future DirectionsCancer Sensitizing Agents for Chemotherapy. 2019;5:111–116. Available from: https://doi.org/10.1016/B978-0-12-817661-0.00007-X

  44. Gerhäuser C, Klimo K, Hümmer W, Hölzer J, Petermann A, Garreta-Rufas A, et al. Identification of 3-hydroxy-beta-damascone and related carotenoid-derived aroma compounds as novel potent inducers of Nrf2-mediated phase 2 response with concomitant anti-inflammatory activityMolecular nutrition & food research. 2009;53(10):1237–1244. Available from: https://doi.org/10.1002/mnfr.200800492

  45. Dr. Duke’s Phytochemical and Ethnobotanical Data bases. .

Cite this article

Anitha Puranik, Tarikere C Taranath. Physicochemical and Phytochemical Assay of Rediscovered Wissadula contracta (Link) R. E. Fries from Karnataka, India. Karnatak University Journal of Science 54(3), (2023), 39–45. https://doi.org/10.61649/kujos/v54i3.anitha

Views
574
Downloads
158
Citations