Karnatak University Journal of Science

Volume: 55 Issue: 3

  • Open Access
  • Original Article

Green Synthesized Zero-Dimensional Carbon Dots Modified Glassy Carbon Electrode for the Enhanced Sensing of Genestein

Ranjita D Tandel1, J Seetharamappa1,∗


1Department of Chemistry, Karnatak University, Dharwad, 580 003, Karnataka, India

Corresponding author email: [email protected]
 

Year: 2024, Page: 1-11, Doi: https://doi.org/10.61649/kujos/v55i3.24.2

Received: Jan. 29, 2024 Accepted: Aug. 26, 2024 Published: Sept. 27, 2024

Abstract

The present study explores carbon dots (CDs) modified glassy carbon electrode (GCE) for the sensing of a flavonoid, genestein (GEN). CDs were prepared by hydrothermal reaction involving the heating of EDTA at 150 °C for 4 h. The proposed CDs modified GCE (CDs/GCE) was used to investigate the electrochemical behaviour of GEN by CV. The voltammetric measurements were conducted in phosphate buffer solution (PBS) of pH 3. Under optimized conditions a linear relationship between peak current and concentration of GEN was noticed in the range of 0.5-30.01, 0.1-54.16 and 1.0-62.5 μM for differential pulse voltammetric (DPV), square wave voltammetric (SWV) and adsorptive stripping differential pulse voltammetric (AdSDPV), respectively. The applicability of the proposed methods was demonstrated by analyzing spiked human urine samples and the results were found to be satisfactory. In addition, the proposed sensor was successfully used to understand the mechanism of binding between GEN and bovine serum albumin.

Keywords: Genestein, Carbon dots, Electrochemical methods, Analytical applications

References

  1. Murphy SP, Barr SI. Challenges in using the dietary reference intakes to plan diets for groupsNutrition Reviews. 2005;63(8):267–271. Available from: https://doi.org/10.1111/j.1753-4887.2005.tb00140.x

  2. Barnes S, Kirk M, Coward L. Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometryJournal of Agricultural and Food Chemistry. 1994;42(11):2466–2474. Available from: https://pubs.acs.org/doi/10.1021/jf00047a019

  3. Naim M, Gestetner B, Bondi A, Birk Y. Antioxidative and antihemolytic activities of soybean isoflavonesJournal of Agricultural and Food Chemistry. 1976;24(6):1174–1177. Available from: https://pubs.acs.org/doi/10.1021/jf60208a029

  4. Pratt DE, Birac PM. Source of Antioxidant Activity of Soybeans and Soy ProductsJournal of Food Science. 1979;44(6):1720–1722. Available from: https://doi.org/10.1111/j.1365-2621.1979.tb09125.x

  5. Wu L, Jr. JBL, Dewald HD. Voltammetry and LCEC of isoflavonesElectroanalysis. 1997;9(10):796–799. Available from: https://doi.org/10.1002/elan.1140091013

  6. Franke A, Custer LJ. High-performance liquid chromatographic assay of isoflavonoids and coumestrol from human urineJournal of Chromatography B: Biomedical Sciences and Applications. 1994;662(1):47–60. Available from: https://doi.org/10.1016/0378-4347(94)00390-4

  7. Luan F, Tang LL, Chen XX, Liu HT. Simultaneous Determination of Daidzein, Genistein and Formononetin in Coffee by Capillary Zone ElectrophoresisSeparations . 2017;4(1):1–8. Available from: https://doi.org/10.3390/separations4010001

  8. César IdC, Braga FC, Vianna-Soares CD, Nunan EdA, Pianetti GA, Moreira-Campos LM. Quantitation of genistein and genistin in soy dry extracts by UV-Visible spectrophotometric methodGérson Antônio Pianetti. 2008;31(8):1933–1936. Available from: https://doi.org/10.1590/S0100-40422008000800003

  9. Zhang X, Zheng J, Gao H. Electrochemical behavior of genistein and its polarographic determination in soybeansAnalytical letters. 2001;34(11):1901–1912. Available from: https://doi.org/10.1081/AL-100106120

  10. Popa OM, Diculescu VC. Electrochemical behaviour of isoflavones genistein and biochanin A at a glassy carbon electrodeElectroanalysis. 2013;25(5):1201–1208. Available from: https://doi.org/10.1002/elan.201200657

  11. Zhang J, Yu SH. Carbon dots: large-scale synthesis, sensing and bioimagingMaterials Today. 2016;19(7):382–393. Available from: https://doi.org/10.1016/j.mattod.2015.11.008

  12. Chen PC, Chen YN, Hsu PC, Shih CC, Chang HT. Photoluminescent organosilane-functionalized carbon dots as temperature probesChemical Communications. 2013;49(16):1639–1641. Available from: https://doi.org/10.1039/C3CC38486A

  13. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolightsAngew. Chem., Int. Ed. 2010;49(38):6726–6744. Available from: https://doi.org/10.1002/anie.200906623

  14. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, et al. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent EmissionAngewandte Chemie International Edition. 2013;52(30):7800–7804. Available from: https://doi.org/10.1002/anie.201301114

  15. Bao L, Zhang ZL, Tian ZQ, Zhang L, Liu C, Lin Y, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanismAdvanced Materials. 2011;23(48):5801–5806. Available from: https://doi.org/10.1002/adma.201102866

  16. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-Sized Carbon Dots for Bright and Colorful PhotoluminescenceJournal of the American Chemical Society. 2006;128(24):7756–7757. Available from: https://pubs.acs.org/doi/10.1021/ja062677d

  17. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube FragmentsJournal of the American Chemical Society. 2004;126(40):12736–12737. Available from: https://doi.org/10.1021/ja040082h

  18. HL, He X, Liu Y, Huang H, Lian S, Lee ST, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties CarbonCarbon. 2011;49(2):605–609. Available from: https://doi.org/10.1016/j.carbon.2010.10.004

  19. Zhang B, Liu C, Liu Y. A Novel One-Step Approach to Synthesize Fluorescent Carbon NanoparticlesEurEuropean Journal of Inorganic Chemistry. 2010;2010(28):4411–4414. Available from: https://doi.org/10.1002/ejic.201000622

  20. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP. Surface functionalized carbogenic quantum dotsSmall. 2008;4(4):455–458. Available from: https://doi.org/10.1002/smll.200700578

  21. Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticlesChemical Communications. 2010;46(21):3681–3683. Available from: https://doi.org/10.1039/C000114G

  22. Zhang R, Chen W. Nitrogen-doped carbon quantum dots: facile synthesis and application as a turn-off fluorescent probe for detection of Hg2+ ionsBiosensors and Bioelectronics. 2014;55:83–90. Available from: https://doi.org/10.1016/j.bios.2013.11.074

  23. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysisChemical Communications. 2012;48(64):7955–7957. Available from: https://doi.org/10.1039/C2CC33869F

  24. Zhang J, Shen W, Pan D, Zhang Z, Fang Y, Wu M. Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucroseNew Journal of Chemistry. 2010;34(4):591–593. Available from: https://doi.org/10.1039/B9NJ00662A

  25. Doweiko JP, Nompleggi DJ. Role of albumin in human physiology and pathophysiologyJournal of Parenteral and Enteral Nutrition. 1991;15(4):476–483. Available from: https://doi.org/10.1177/0148607191015004476

  26. Nicholson JP, Wolmarans MR, Park GR. The role of albumin in critical illnessBJA: British Journal of Anaesthesia. 2000;85(4):599–610. Available from: https://doi.org/10.1093/bja/85.4.599

  27. Simard JR, Zunszain PA, Ha CE, Yang JS, Bhagavan NV, Petitpas I, et al. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopyProceedings of the National Academy of Sciences of the United States of America. 2005;102(50):17958–17963. Available from: https://doi.org/10.1073/pnas.0506440102

  28. Yamasaki K, Chuang VTG, Maruyama T, Otagiri M. Albumin–drug interaction and its clinical implicationBiochimica et Biophysica Acta (BBA) - General Subjects. 2013;1830(12):5435–5443. Available from: https://dx.doi.org/10.1016/j.bbagen.2013.05.005

  29. Bertucci C, Domenici E. Reversible and Covalent Binding of Drugs to Human Serum Albumin: Methodological Approaches and Physiological RelevanceCurrent Medicinal Chemistry. 2002;9(15):1463–1481. Available from: https://dx.doi.org/10.2174/0929867023369673

  30. Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extensionBiochimica et Biophysica Acta (BBA) - General Subjects. 2013;1830(12):5526–5534. Available from: https://dx.doi.org/10.1016/j.bbagen.2013.04.023

  31. Zhu Z, Shi L, Feng H, Zhou HS. Single domain antibody coated gold nanoparticles as enhancer for Clostridium difficile toxin detection by electrochemical impedance immunosensorsBioelectrochemistry. 2015;101:153–158. Available from: https://dx.doi.org/10.1016/j.bioelechem.2014.10.003

  32. Prashanth SN, NLT, Seetharamappa J, AKS, Reddy AVR. Fabrification of electroreduced graphene oxide–bentonite sodium composite modified electrode and its sensing application for linezolidElectrochimica Acta. 2014;133:49–56. Available from: https://doi.org/10.1016/j.electacta.2014.04.022

  33. Heli H, Sattarahmady N, Jabbari A, Moosavi-Movahedi AA, Hakimelahi GH, Tsai FY. Adsorption of human serum albumin onto glassy carbon surface – Applied to albumin-modified electrode: Mode of protein–ligand interactionsJournal of Electroanalytical Chemistry. 2007;610(1):67–74. Available from: https://dx.doi.org/10.1016/j.jelechem.2007.07.005

Cite this article

Ranjita D Tandel, J Seetharamappa. Green Synthesized Zero-Dimensional Carbon Dots Modified Glassy Carbon
Electrode for the Enhanced Sensing of Genestein. Karnatak University Journal of Science 55(3), (2024), 1–11

Views
29
Downloads
19
Citations