Karnatak University Journal of Science

Volume: 54 Issue: 4

  • Open Access
  • Original Article

GC-MS Analysis of Phytoconstituents from Methanolic Leaf Extract of Simarouba glauca

Priyadarshini S Shettar1, Murigendra B Hiremath1,*

1Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India

*Corresponding author email: [email protected]

 

Year: 2023, Page: 73-78, Doi: https://doi.org/10.61649/kujos/v54i4.23.4

Received: Sept. 20, 2023 Accepted: Nov. 15, 2023 Published: Dec. 27, 2023

Abstract

Simarouba glauca (SG) is known for exhibiting anti-inflammatory, anti-neoplastic, anti-diabetic and analgesic properties. The aim of this study is to analyze the phytochemical composition, presence of total phenols and flavonoids, anti-oxidant activity and Fourier Transform Infrared spectroscopy (FT-IR) and Gas Chromatography- Mass Spectroscopy (GC-MS) analysis of Simarouba glauca leaf extracts. The total phenolic content of chloroform and acetone extracts was 136.71 ± 0.06 and 98.35 ± 0.02 mg/g GAE respectively. The total flavonoid content of chloroform and acetone extracts was 311.06 ± 0.03 and 358 ± 0.05 mg/g QE respectively, which are higher than that of other extracts. Both acetone and methanol extracts showed higher anti-oxidant capacities in contrast to other solvent extracts. The Gas Chromatography- Mass Spectroscopy (GC-MS) analysis of methanol extract exhibited the presence of twenty-two major peaks. The biological activities of these compounds are discussed in the present study. The overall results of this work provide remarkable evidence for the use of the methanol fraction of Simarouba glauca as a competent source of phytochemicals that are effective against various diseases.

Keywords: GC-MS Analysis; FR-IR Analysis; Simarouba glauca; Anti-oxidant Activity

References

  1. Patel DP, Verma VD, Loknathan TR, Bhatt KC, Mishra J. Simarouba glauca - A non-traditional oil source. 1997.

  2. Puranik SI, Ghagane SC, Nerli RB, Jalalpure SS, Hiremath MB. Evaluation of in vitro Antioxidant and Anticancer Activity of Simarouba glauca Leaf Extracts on T-24 Bladder Cancer Cell LinePharmacognosy Journal. 2017;9(6):906–912. Available from: https://doi.org/10.5530/pj.2017.6.142

  3. Valeriote FA, Corbett TH, Grieco PA, Moher ED, Collins JL, Fleck TJ. Anticancer activity of glaucarubinone analoguesOncology research. 1998;10(4):201–208. Available from: https://pubmed.ncbi.nlm.nih.gov/9778691/

  4. Kupchan SM, Britton RW, Lacadie JA, Ziegler MF, Sigel CW. Tumor inhibitors. 100. Isolation and structural elucidation of bruceantin and bruceantinol, new potent antileukemic quassinoids from Brucea antidysentericaThe Journal of Organic Chemistry. 1975;40(5):648–654. Available from: https://doi.org/10.1021/jo00893a023

  5. Alves IABS, Miranda HM, Soares LAL, Randau KP. Simaroubaceae family: botany, chemical composition and biological activitiesRevista Brasileira de Farmacognosia. 2014;24(4):481–501. Available from: https://doi.org/10.1016/j.bjp.2014.07.021

  6. Deepti K, Umadevi P, Vijayalakshmi G, Polarao BV. Antimicrobial Activity and Phytochemical Analysis of Morinda tinctoria Roxb. Leaf ExtractsAsian Pacific Journal of Tropical Biomedicine. 2012;2(3):1440–1442. Available from: https://doi.org/10.1016/S2221-1691(12)60433-X

  7. Singleton VL, Orthofer R, Lamuela-Raventós RM. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagentOxidants and Antioxidants Part A. 1999;299:152–178. Available from: https://doi.org/10.1016/S0076-6879(99)99017-1

  8. Phuyal N, Jha PK, Raturi PP, Rajbhandary S. Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of<i>Zanthoxylum armatum</i>DCThe Scientific World Journal. 2020;p. 1–7. Available from: https://doi.org/10.1155/2020/8780704

  9. Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compoundsTrends in Plant Science. 1997;2(4):152–159. Available from: https://doi.org/10.1016/S1360-1385(97)01018-2

  10. Liu JK. Natural products in cosmeticsNatural Products and Bioprospecting. 2022;12(1):40. Available from: https://link.springer.com/article/10.1007/s13659-022-00363-y

  11. AC, MNC, HA. Plant secondary metabolites: occurrence, structure and role in the human diet. (pp. 1-24) John Wiley & Sons. 2006.

  12. Mugaranja KP, Kulal A. Alpha glucosidase inhibition activity of phenolic fraction from Simarouba glauca: An in-vitro, in-silico and kinetic studyHeliyon. 2020;6(7):e04392. Available from: https://doi.org/10.1016/j.heliyon.2020.e04392

  13. Ramasamy SP, Rajendran A, Pallikondaperumal M, Sundararajan P, Husain FM, Khan A, et al. Broad-Spectrum Antimicrobial, Antioxidant, and Anticancer Studies of Leaf Extract of Simarouba glauca DC In VitroAntibiotics. 2022;11(1):59. Available from: https://doi.org/10.3390/antibiotics11010059

  14. Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti‐Inflammatory Property of n ‐Hexadecanoic Acid: Structural Evidence and Kinetic AssessmentChemical Biology & Drug Design. 2012;80(3):434–439. Available from: https://doi.org/10.1111/j.1747-0285.2012.01418.x

  15. Trease GE, Evans WC. Phenols and phenolic glycosidesPharmacognosy. 1996;14:218–254. Available from: https://doi.org/10.12691/ajfst-4-4-3

  16. Kadhim MJ. In Vitro antifungal potential of Acinetobacter baumannii and determination of its chemical composition by gas chromatography-mass spectrometryDer Pharma Chemica. 2016;8(19):657–665. Available from: https://www.derpharmachemica.com/pharma-chemica/in-vitro-antifungal-potential-of-acinetobacter-baumannii-and-determination-of-its-chemical-composition-by-gas-chromatogr.pdf

  17. Cook SD. An Historical Review of Phenylacetic AcidPlant and Cell Physiology. 2019;60(2):243–254. Available from: https://doi.org/10.1093/pcp/pcz004

  18. Franco L, Oliveira BHD. Determination of umckalin in commercial tincture and phytopreparations containing Pelargonium sidoides by HPLC: Comparison of sample preparation proceduresTalanta. 2010;81(4-5):1368–1372. Available from: https://doi.org/10.1016/j.talanta.2010.02.036

  19. Ray M, Kumar V, Banerjee C, Gupta P, Singh S, Singh A. Investigation of biosurfactants produced by three indigenous bacterial strains, their growth kinetics and their anthracene and fluorene toleranceEcotoxicology and Environmental Safety. 2021;208:111621. Available from: https://doi.org/10.1016/j.ecoenv.2020.111621

  20. Dyer CA, Raymond-Whish S, Schmuki S, Fisher T, Pyzyna B, Bennett A, et al. Accelerated follicle depletion in vitro and in vivo in Sprague-Dawley rats using the combination of 4-vinylcyclohexene diepoxide and triptolideJournal of Zoo and Wildlife Medicine. 2013;44(4s):9–17. Available from: https://doi.org/10.1638/1042-7260-44.4S.S9

  21. Kirimura K, Cao W, Onda Y, Yoshioka I, Ishii Y. Selective and high-yield production of ethyl α-d-glucopyranoside by the α-glucosyl transfer enzyme of Xanthomonas campestris WU-9701 and glucose isomeraseJournal of Bioscience and Bioengineering. 2022;134(3):220–225. Available from: https://doi.org/10.1016/j.jbiosc.2022.06.012

  22. Patil S, Murthy KR. Antioxidant Profile and GCMS Analysis of Ethanol Extract of Simarouba glauca SeedsAsian J Biol Life Sci. 2020;9(3):379–385.

  23. Karpagasundari C, Kulothungan S. Analysis of bioactive compounds in Physalis minima leaves using GC MS, HPLC, UV-VIS and FTIR techniquesJournal of Pharmacognosy and Phytochemistry. 2014;3(4):196–201. Available from: https://www.phytojournal.com/vol3Issue4/Issue_nov_2014/47.1.pdf

  24. Jose A, Chaitanya MVNL, Kannan E, Madhunapantula SV. Tricaproin Isolated From Simarouba glauca Inhibits the Growth of Human Colorectal Carcinoma Cell Lines by Targeting Class-1 Histone DeacetylasesFrontiers in Pharmacology. 2018;9. Available from: https://doi.org/10.3389/fphar.2018.00127

Cite this article

Priyadarshini S Shettar, Murigendra B Hiremath. GC-MS Analysis of Phytoconstituents from Methanolic Leaf Extract of Simarouba glauca. Karnatak University Journal of Science 54(4), (2023), 73–78. https://doi.org/10.61649/kujos/v54i4.23.4

Views
299
Downloads
138
Citations