Karnatak University Journal of Science

Volume: 54 Issue: 3

  • Open Access
  • Original Article

Bioadsorption of Oxyanions of Chromium using Bionanomaterial: Thermodynamics and Kinetic Studies

G Jaishree1, G Divya1, T Siva Rao1,* , M L Prasanna Chippada1

1Department of Chemistry, Andhra Unversity, Vishakapatnam, 530003, India

*Corresponding author email: [email protected]

Year: 2023, Page: 11-18, Doi: https://doi.org/10.61649/kujos/v54i3.jaishree

Received: Oct. 29, 2022 Accepted: July 7, 2023 Published: Nov. 1, 2023

Abstract

This study focused on fabricating an activated bionanomaterial derived from Calotropis procera stem through ball milling. The resulting bionanomaterial was characterized using FTIR, SEM, and BET surface area analysis. Notably, BET analysis revealed a significant increase in surface area (578 m2/g). SEM images exhibited an uneven surface with larger holes and cave-like openings. FTIR analysis indicated the presence of -OH groups on the bionanomaterial's surface. The activated bionanomaterial was then utilized for Cr(VI) adsorption experiments, and optimal adsorption parameters were determined as pH 2, contact time of 180 minutes, adsorbent dosage of 3 g, initial Cr(VI) concentration of 40 ppm, and temperature of 60°C. Thermodynamic analysis demonstrated positive ∆H and negative ∆G values, suggesting an endothermic and spontaneous adsorption process. The adsorption kinetics followed a first-order reaction, and the experimental data aligned well with the Langmuir adsorption isotherm.

Keywords: Activated Carbon, Bioadsorption, Ball milling, Adsorption isotherms, Thermodynamics, Kinetic studies of adsorption

References

  1. Singh M, Tiwari DP, Bhagat M. Adsorption of Cr(VI) Ions using Activated Carbon Produced from Indian Water Chestnut (Trapa natans) Peel PowderAsian Journal of Chemistry. 2020;32(4):876–880. Available from: https://doi.org/10.14233/ajchem.2020.22482

  2. Guo X, Liu A, Liu A, Niu X, Jiang M, Jiang M, et al. Adsorption Mechanism of Hexavalent Chromium on Biochar: Kinetic, Thermodynamic, and Characterization StudiesACS Omega. 2020;5(42):27323–27331. Available from: https://doi.org/10.1021/acsomega.0c03652

  3. Dula T, Siraj K, Kitte SA. Adsorption of Hexavalent Chromium from Aqueous Solution Using Chemically Activated Carbon Prepared from Locally Available Waste of Bamboo (<i>Oxytenanthera abyssinica</i>) ISRN Environmental Chemistry. 2014;2014(438245):1–9. Available from: http://dx.doi.org/10.1155/2014/438245

  4. Yu D, Wang M, Tian T, Lin S, Xu P. The Effect of Hexavalent Chromium on the Incidence and Mortality of Human Cancers: A Meta-Analysis Based on Published Epidemiological Cohort StudiesFrontiers in Oncology. 2019;9(24):1–15. Available from: https://doi.org/10.3389/fonc.2019.00024

  5. Atangana E, Oberholster PJ. Mathematical modeling and stimulation of thermodynamic parameters for the removal for Cr6+ from wastewater using chitosan cross-linked glutaraldehyde adsorbentAlexandria Engineering Journal. 2020;59(4):1931–1939. Available from: https://doi.org/10.1016/j.aej.2019.12.012

  6. World Health Organization: Background document for development of WHO Guidelines for drinking-water quality. 2020.

  7. Venkatesan A, Ramalakshmi N, Vidhya G. Adsorption of Fe3+ Ion from Aqueous Solution by Activated Carbon Prepared from Leucas aspera: Thermodynamic, Kinetic and Equilibrium ApproachAsian Journal of Chemistry. 2017;29(3):617–622. Available from: https://doi.org/10.14233/ajchem.2017.20276

  8. Muhammad A, Shah AUHA, Bilal SH. Effective Adsorption of Hexavalent Chromium and Divalent Nickel Ions from Water through Polyaniline, Iron Oxide, and Their CompositesApplied Sciences. 2020;10(8):2882. Available from: https://doi.org/10.3390/app10082882

  9. Kiliçel F, Karapinar HS. Preparation and Characterization of Activated Carbon Produced from Eriobotrya japonica Seed by Chemical Activation with ZnCl2Asian Journal of Chemistry. 2018;30(8):1823–1828. Available from: https://doi.org/10.14233/ajchem.2018.21329

  10. Joseph J, Olupot P, Menya WE, Kalibbala HM. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: AReview. Journal of Bioresources and Bioproducts. 2021;6:292–322. Available from: https://doi.org/10.1016/j.jobab.2021.03.003

  11. Pirayesh H, Khanjanzadeh H, Salari A. Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboardComposites Part B: Engineering. 2013;45(1):858–863. Available from: http://dx.doi.org/10.1016/j.compositesb.2012.05.008

  12. Clementin LC, Meng C, Fennell PS, Hallett JP. Efficient Fractionation of Lignin- and Ash-Rich Agricultural Residues Following Treatment With a Low-Cost Protic Ionic LiquidFrontiers in Chemistry. 2019;7(246):1–13. Available from: https://doi.org/10.3389/fchem.2019.00246

  13. Gan YX. Activated Carbon from Biomass Sustainable SourcesC. 2021;7(2):39. Available from: https://doi.org/10.3390/c7020039

  14. Moulefera I, García-Mateos FJ, Benyoucef A, Rosas JM, Rodríguez-Mirasol J, Cordero T. Effect of Co-solution of Carbon Precursor and Activating Agent on the Textural Properties of Highly Porous Activated Carbon Obtained by Chemical Activation of Lignin With H3PO4Frontiers in Materials. 2020;7(153):1–14. Available from: https://doi.org/10.3389/fmats.2020.00153

  15. Yakout SM, El-Deen GS. Characterization of activated carbon prepared by phosphoric acid activation of olive stonesArabian Journal of Chemistry. 2016;9(9):S1155–S1162. Available from: http://dx.doi.org/10.1016/j.arabjc.2011.12.002

  16. Chai MN, Isa MIN. The Oleic Acid Composition Effect on the Carboxymethyl Cellulose Based Biopolymer ElectrolyteJournal of Crystallization Process and Technology. 2013;03(01):1–4. Available from: https://doi.org/10.4236/jcpt.2013.31001

  17. Rodríguez-Vidal FJ, Ortega-Azabache B, González-Martínez Á, Bellido-Fernández A. Comprehensive characterization of industrial wastewaters using EEM fluorescence, FT-IR and 1H NMR techniquesScience of The Total Environment. 2022;805(805):150417–150429. Available from: https://doi.org/10.1016/j.scitotenv.2021.150417

  18. Manoj B. Role of Infrared Spectroscopy in Coal Analysis-An InvestigationAmerican Journal of Analytical Chemistry. 2014;5:367–372. Available from: https://doi.org/10.4236/ajac.2014.56044

  19. Parlayici Ş, Pehlivan E. Comparative study of Cr(VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamicJournal of Analytical Science and Technology. 2019;10(1):1–8. Available from: https://doi.org/10.1186/s40543-019-0175-3

  20. Adebayo GB, Adegoke HI, Fauzeeyat S. Adsorption of Cr(VI) ions onto goethite, activated carbon and their composite: kinetic and thermodynamic studiesApplied Water Science. 2020;10(9):1–18. Available from: https://doi.org/10.1007/s13201-020-01295-z

  21. Labied R, Benturki O, Hamitouche AYE, Donnot A. Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (<i>Ziziphus jujuba</i> cores): Kinetic, equilibrium, and thermodynamic studyAdsorption Science & Technology. 2018;36(3-4):1066–1099. Available from: https://doi.org/10.1177/0263617417750739

  22. Thabede PM, Shooto ND, Xaba T, Naidoo EB. Sulfuric Activated Carbon of Black Cumin (Nigella sativa L.) Seeds for the Removal of Cadmium(II) and Methylene Blue DyeAsian Journal of Chemistry. 2020;32(6):1361–1369. Available from: https://doi.org/10.14233/ajchem.2020.22597

  23. Gupta VK, Pathania D, Sharma S. Adsorptive remediation of Cu(II) and Ni(II) by microwave assisted H3PO4 activated carbonArabian Journal of Chemistry. 2017;10(2):S2836–S2844. Available from: https://doi.org/10.1016/j.arabjc.2013.11.006

  24. Ahmad MA, Puad NAA, Bello OS. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activationWater Resources and Industry. 2014;6:18–35. Available from: http://dx.doi.org/10.1016/j.wri.2014.06.002

Cite this article

G Jaishree, G Divya, T Siva Rao, M L Prasanna Chippada. Bioadsorption of Oxyanions of Chromium using Bionanomaterial: Thermodynamics and Kinetic Studies. Karnatak University Journal of Science 54(3), (2023), 11–18. 
https://doi.org/10.61649/kujos/v54i3.jaishree

Views
587
Downloads
228
Citations