Karnatak University Journal of Science

Volume: 56 Issue: 1

  • Open Access
  • Original Article

An Inclusive Disquisition on Thiazoles as Possible Antifungal Agents

Namrata N Mundargi1, K Sujatha1,∗

1Department of Chemistry, Karnatak University, Dharwad, 580003, Karnataka, India


Corresponding author email: [email protected]

Year: 2025, Page: 1-7, Doi: https://doi.org/10.61649/kujos/v56i1.24.sujatha

Received: Jan. 12, 2025 Accepted: Feb. 22, 2025 Published: March 10, 2025

Abstract

In recent years, antifungal medications have become increasingly ineffective due to antifungal resistance, which is one of the largest concerns facing the globe today. The inception of novel heterocycles that have substantial biological consequences has become vital owing to the advent of several epidemics and resistant bacteria. Numerous hybrid compounds are presently undergoing varying phases of clinical testing and could eventually be utilized in the therapeutic settings to address a range of ailments. In this overview, Nitrogen and sulfur-based heterocyclic aromatic compounds play a substantial and crucial role in medicine and the production of pharmacologically active substances. Thiazoles are highlighted for their crucial role, attributed to their wide array of biological activities within the field of medicinal chemistry. The emergence of antifungal resistance poses a considerable public health challenge as it diminishes the efficacy of antifungal treatments, leading to heightened rates of illness, mortality, and healthcare expenses. Given the foregoing, we have compiled an inventory of the most current developments in thiazoles as antifungal agents, encompassing papers reported from 2020 to 2024.

Keywords: Antifungal, Thiazoles

 

References

  1. Zhang T, Yuan C, Zhou Q, Xin H, Liu Y, Tian J, et al. Chalcone derivatives containing thiazole fragment: Synthesis and antifungal activityJournal of Saudi Chemical Society. 2023;27(6):1–13. Available from: https://doi.org/10.1016/j.jscs.2023.101773

  2. Jadhav PM, Kantevari S, Tekale AB, Bhosale SV, Pawar RP, Tekale SU. A review on biological and medicinal significance of thiazolesPhosphorus, Sulfur, and Silicon and the Related Elements. 2021;196(10):879–895. Available from: https://doi.org/10.1080/10426507.2021.1945601

  3. Siddiqui N, Arshad MF, Ahsan W, Alam MS. Thiazoles: A valuable insight into the recent advances and biological activitiesInternational Journal of Pharmaceutical Sciences and Drug Research. 2009;1(3):136–143. Available from: https://doi.org/10.25004/IJPSDR.2009.010302

  4. Mishra CB, Kumari S, Tiwari M. Thiazole: A promising heterocycle for the development of potent CNS active agentsEuropean Journal of Medicinal Chemistry. 2015;92:1–34. Available from: https://doi.org/10.1016/j.ejmech.2014.12.031

  5. Borcea AM, Ionuț I, Crișan O, Oniga O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivativesMolecules. 2021;26(3):1–26. Available from: https://doi.org/10.3390/molecules26030624

  6. Arshad MF, Alam A, Alshammari AA, Alhazza MB, Alzimam IM, Alam MA, et al. Thiazole: A versatile standalone moiety contributing to the development of various drugs and biologically active agentsMolecules. 2022;27(13):1–54. Available from: https://doi.org/10.3390/molecules27133994

  7. Colorado-Peralta R, Olivares-Romero JL, Rosete-Luna S, García-Barradas O, Reyes-Márquez V, Hernández-Romero D, et al. Copper-Coordinated Thiazoles and Benzothiazoles: A Perfect Alliance in the Search for Compounds with Antibacterial and Antifungal ActivityInorganics. 2023;11(5):1–31. Available from: https://doi.org/10.3390/inorganics11050185

  8. Soliman S, Soliman A, Alzoubar K, Merza J, Alasmi A. Systematic Review on Thiazole Compounds as Nanoparticles: Chemistry, Synthesis, Antimicrobial Activities, Therapeutic InvestigationNanosistemi, Nanomateriali, Nanotehnologii. 2023;21:209–232. Available from: https://www.imp.kiev.ua/nanosys/media/pdf/2023/1/nano_vol21_iss1_p0209p0232_2023.pdf

  9. Eissa SI, Farrag AM, Abbas SY, Shehry MF, Ragab A, Fayed EA, et al. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studiesBioorganic Chemistry. 2021;110:104803. Available from: https://doi.org/10.1016/j.bioorg.2021.104803

  10. El-Sabbagh OI, Baraka MM, Ibrahim SM, Pannecouque C, Andrei G, Snoeck R, et al. Synthesis and antiviral activity of new pyrazole and thiazole derivativesEuropean Journal of Medicinal Chemistry. 2009;44(9):3746–3753. Available from: https://doi.org/10.1016/j.ejmech.2009.03.038

  11. Francesco MED, Dessole G, Nizi E, Pace P, Koch U, Fiore F, et al. Novel macrocyclic inhibitors of hepatitis C NS3/4A protease featuring a 2-amino-1, 3-thiazole as a P4 carbamate replacementJournal of medicinal chemistry. 2009;52(22):7014–7028. Available from: https://doi.org/10.1021/jm900524b

  12. Ngoei KRW, Ng DCH, Gooley PR, Fairlie DP, Stoermer MJ, Bogoyevitch MA. Identification and characterization of bi-thiazole-2, 2′-diamines as kinase inhibitory scaffoldsBiochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2013;1834(6):1077–1088. Available from: https://doi.org/10.1016/j.bbapap.2013.02.001

  13. Huang D, Liao M, Zhang T, You S, Zhou YF, Cheng YX. Design, Synthesis and Fungicidal Activity of Novel 2-aryl-thiazole Derivatives Containing Saccharin MotifChemistry Select. 2020;5(42):13179–13182. Available from: https://doi.org/10.1002/slct.202003616

  14. Reddy GM, Garcia JR, Reddy VH, Andrade AMD, Camilo A, Ribeiro RAP, et al. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivativesEuropean Journal of Medicinal Chemistry. 2016;123:508–513. Available from: https://doi.org/10.1016/j.ejmech.2016.07.062

  15. Gangurde KB, More RA, Adole VA, Ghotekar DS. Design, synthesis and biological evaluation of new series of benzotriazole-pyrazole clubbed thiazole hybrids as bioactive heterocycles: Antibacterial, antifungal, antioxidant, cytotoxicity studyJournal of Molecular Structure. 2024;1299:136760. Available from: https://doi.org/10.1016/j.molstruc.2023.136760

  16. Xu Z, Cheng X, Cui H, Cao L, Song Y, Chang X, et al. Design, selective synthesis and biological activities evaluation of novel thiazol-2-ylbenzamide and thiazole-2-ylbenzimidoyl chloride derivativesBioorganic Chemistry. 2024;p. 107333.

  17. Soliman NN, Salam MAE, Fadda AA, Abdel-Motaal M. Synthesis, Characterization, and Biochemical Impacts of Some New Bioactive Sulfonamide Thiazole Derivatives as Potential Insecticidal Agents against the Cotton Leafworm, Spodoptera littoralisJournal of agricultural and food chemistry. 2020;68(21):5790–5805. Available from: https://doi.org/10.1021/acs.jafc.9b06394

  18. Biernasiuk A, Berecka-Rycerz A, Gumieniczek A, Malm M, Łączkowski KZ, Szymańska J, et al. The newly synthesized thiazole derivatives as potential antifungal compounds against Candida albicansApplied Microbiology and Biotechnology. 2021;105(16-17):6355–6367. Available from: https://doi.org/10.1007/s00253-021-11477-7

  19. Salem MA, Abbas SY, El-Sharief MA, Helal MH, Gouda MA, Assiri MA, et al. Novel Structural Hybrids of Pyrrole and Thiazole Moieties: Synthesis and Evaluation of Antibacterial and Antifungal ActivitiesActa Chimica Slovenica. 2021;68(4):990–996. Available from: https://doi.org/10.17344/acsi.2021.6980

  20. Namitha TH, Nair SS, Kumar A, Vinod B, Daisy PA. A review on synthesis and biological activity of thiazole and its derivativesInternational Journal of Pharmaceutical Sciences Research. 2021;70(1):189–193. Available from: https://globalresearchonline.net/journalcontents/v70-1/29.pdf

  21. Ram VJ, Sethi A, Nath M, Pratap R. The Chemistry of Heterocycles: Nomenclature and Chemistry of Three-to-Five Membered Heterocycles. (pp. 1-489) Elsevier. 2019.

  22. Ripain IHA, Ngah N. A brief review on the thiazole derivatives: Synthesis methods and biological activitiesMalaysian Journal of Analytical Sciences. 2021;25(2):257–267. Available from: https://mjas.analis.com.my/mjas/v25_n2/pdf/Hasanah_25_2_8.pdf

  23. Li JJ. Cook-Heilbron thiazole synthesis. In: Name Reactions . (pp. 82) Berlin, Heidelberg. Springer. 2003.

  24. Stewart AG, Paterson DL. How urgent is the need for new antifungals? Expert Opinion on Pharmacotherapy. 2021;22(14):1857–1870. Available from: https://doi.org/10.1080/14656566.2021.1935868

  25. Teixeira MM, Carvalho DT, Sousa E, Pinto E. New Antifungal Agents with Azole MoietiesPharmaceuticals. 2022;15(11):1–43. Available from: https://dx.doi.org/10.3390/ph15111427

  26. Ruma YN, Keniya MV, Tyndall JDA, Monk BC. Characterisation of Candida parapsilosis CYP51 as a Drug Target Using Saccharomyces cerevisiae as HostJournal of Fungi. 2022;8(1):1–20. Available from: https://dx.doi.org/10.3390/jof8010069

  27. Woolley DW. Some biological effects produced by benzimidazole and their reversal by purinesJournal of Biological Chemistry. 1944;152(2):225–232. Available from: https://doi.org/10.1016/S0021-9258(18)72045-0

  28. Zhang H, Zhu A. Emerging Invasive Fungal Infections: Clinical Features and Controversies in Diagnosis and Treatment ProcessesInfection and Drug Resistance. 2020;13:607–615. Available from: https://doi.org/10.2147/IDR.S237815

  29. Fromtling RA. Overview of medically important antifungal azole derivativesClinical Microbiology Reviews. 1988;1(2):187–217. Available from: https://doi.org/10.1128/cmr.1.2.187

  30. Regidor PA, Thamkhantho M, Chayachinda C, Palacios S. Miconazole for the treatment of vulvovaginal candidiasis. In vitro, in vivo and clinical results. Review of the literatureJournal of Obstetrics and Gynaecology. 2023;43(1):1–7. Available from: https://doi.org/10.1080/01443615.2023.2195001

  31. Sheng C, Zhang W. New Lead Structures in Antifungal Drug DiscoveryCurrent Medicinal Chemistry. 2011;18(5):733–766. Available from: https://dx.doi.org/10.2174/092986711794480113

  32. Khanna D, Bharti S. Luliconazole for the treatment of fungal infections: an evidence-based reviewCore Evidence. 2014;113:113–124. Available from: https://dx.doi.org/10.2147/ce.s49629

  33. Brand S, Degenhardt T, Nyirjesy P, Sobel J, Handelsman C, Person K, et al. To evaluate the efficacy and safety of VT-1161, a potent, highly selective inhibitor of fungal CYP51, in treating women with a documented history of recurrent vulvovaginal candidiasis (RVVC) American Journal of Obstetrics and Gynecology. 2016;215(6):PS821. Available from: https://dx.doi.org/10.1016/j.ajog.2016.09.016

  34. Wang SQ, Wang YF, Xu Z. Tetrazole hybrids and their antifungal activitiesEuropean Journal of Medicinal Chemistry. 2019;170:225–234. Available from: https://dx.doi.org/10.1016/j.ejmech.2019.03.023

  35. Wiederhold NP. The antifungal arsenal: alternative drugs and future targetsInternational journal of antimicrobial agents. 2018;51(3):333–339. Available from: https://doi.org/10.1016/j.ijantimicag.2017.09.002

  36. Maertens JA. History of the development of azole derivativesClinical Microbiology and Infection. 2004;10(Suppl 1):1–10. Available from: https://doi.org/10.1111/j.1470-9465.2004.00841.x

  37. Castelli MV, Butassi E, Monteiro MC, Svetaz LA, Vicente F, Zacchino SA. Novel antifungal agents: a patent review (2011 - present) Expert Opinion on Therapeutic Patents. 2014;24(3):323–338. Available from: https://doi.org/10.1517/13543776.2014.876993

  38. Shafiei M, Peyton L, Hashemzadeh M, Foroumadi A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of actionBioorganic Chemistry. 2020;104:104240. Available from: https://dx.doi.org/10.1016/j.bioorg.2020.104240

  39. Schellack G, Harirari P, Schellack N. B-Complex Vitamin Deficiency and SupplementationSouth African Pharmaceutical Journal. 2015;82(4):28–33. Available from: https://www.researchgate.net/publication/283556727_B-complex_vitamin_deficiency_and_supplementation

  40. Neves J, Marinho RP, Martins NRDLL, Araujo PKD, Lucciola J. Prolonged Septicaemic Salmonellosis: Treatment of Intercurrent Schistosomiasis with NiridazoleTransactions of the Royal Society of Tropical Medicine & Hygiene. 1969;63(1):79–84. Available from: https://doi.org/10.1016/0035-9203(69)90070-4

  41. Ouf SA, Gomha SM, Eweis M, Ouf AS, Sharawy IA. Efficiency of Newly Prepared Thiazole Derivatives against Some Cutaneous fungiBioorganic & Medicinal Chemistry. 2018;26(12):3287–3295. Available from: https://doi.org/10.1016/j.bmc.2018.04.056

  42. Scher RK, Nakamura N, Tavakkol A. Luliconazole: a review of a new antifungal agent for the topical treatment of onychomycosisMycoses. 2014;57(7):389–393. Available from: https://dx.doi.org/10.1111/myc.12168

  43. Perfect JR, Ghannoum M. Emerging issues in antifungal resistanceInfectious Disease Clinics of North America . 2020;34(4):921–943. Available from: https://doi.org/10.1016/j.idc.2020.05.003

  44. Yang G, Shi L, Pan Z, Wu L, Fan L, Wang C, et al. The synthesis of coumarin thiazoles containing a trifluoromethyl group and their antifungal activitiesArabian Journal of Chemistry. 2021;14(1):1–8. Available from: https://dx.doi.org/10.1016/j.arabjc.2020.10.027

Cite this article

Namrata N Mundargi, K Sujatha. An Inclusive Disquisition on Thiazoles as Possible Antifungal Agents. Karnatak University Journal of Science 56(1), (2025), 1–7

Views
89
Downloads
55
Citations