Karnatak University Journal of Science

Volume: 55 Issue: 1

  • Open Access
  • Review Article

A Global Mercury Contamination and its Potential Hazards: A Review

M P Sampada1, M David1,∗

1 Environmental Biology and Molecular Toxicology Laboratory, Department of Zoology, Karnatak University, Dharwad, 580 003, India

*Corresponding author email: [email protected]

 

Year: 2024, Page: 1-16, Doi: https://doi.org/10.61649/kujos/v55i1.23.10

Received: Oct. 18, 2023 Accepted: March 27, 2024 Published: March 29, 2024

Abstract

Due to the ever increasing population, rapid industrialization and urbanization, the toxic effects of heavy metals has become a major concern in the globe. Mercury is one of the heavy metals that cause multiple adverse effects to the living systems. In 2017, the World Health Organization (WHO) included it on its list of 10 substances of concern. It is one of the best confounding metals in the environment. Unlike many metals, it is not biologically active. Because of natural processes like mining, erosion, and volcanism, it is a scarce element in the Earth's crust. Although all mercury compounds are hazardous to people and animals, the most toxic forms are the organic ones, particularly methyl and dimethyl mercury. Due to anthropogenic activities and natural processes mercury is released into the atmosphere and due to its long half-life period, the rate of environmental breakdown is low. It exists in the form of element (Hg0) and divalent (Hg2) forms, based on the degree of oxidation in the environment. Due to its devastating toxic effects on organisms, it is currently recognised as one of the strongest neurotoxins. Due to its strong negative impact on the immune system, it is linked to persistent candidiasis growths, anaemia, memory loss, tremors, depression, tiredness, insomnia, headaches. Mercury is known to cause five categories of pathophysiological disorders i.e., immune system disorders, collagen diseases, neurological illnesses, cardiovascular diseases, and infections. This review provides an overview of the sources of mercury, the cumulative effects of mercury on different ecosystems, and phytoremediation for environmental restoration. It gives detailed information about the dangers of mercury exposure and its environmental sources, to make awareness about the mercury usage in different means of day to day life.

Keywords: Mercury, Methylation, Minamata disease, Alzheimer's disease

References

  1. Halim MA, Majumder RK, Zaman MN. Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest BangladeshArabian Journal of Geosciences. 2015;8(6):3391–3401. Available from: https://dx.doi.org/10.1007/s12517-014-1480-1

  2. Lin YP, Cheng BY, Shyu GS, Chang TK. Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central TaiwanEnvironmental Pollution. 2010;158(1):235–244. Available from: https://dx.doi.org/10.1016/j.envpol.2009.07.015

  3. Vutukuru S. Acute Effects of Hexavalent Chromium on Survival, Oxygen Consumption, Hematological Parameters and Some Biochemical Profiles of the Indian Major Carp, Labeo rohitaInternational Journal of Environmental Research and Public Health. 2005;2(3):456–462. Available from: https://dx.doi.org/10.3390/ijerph2005030010

  4. Mason RP, Morel FMM, Hemond HF. The role of microorganisms in elemental mercury formation in natural watersWater, Air, & Soil Pollution. 1995;80(1-4):775–787. Available from: https://dx.doi.org/10.1007/bf01189729

  5. Wittman D. How a war ends: A rational model approachJournal of Conflict Resolution. 1979;23(4):743–763.

  6. Yousafzai AM. Toxicological Effects of Industrial Effluents Dumped in River Kabul on Mahaseer, Tor Putitora at Aman Garh Industrial Area Nowshera, Peshawar, Pakistan. University of the Punjab thesis

  7. Liu J, Zhang XH, Tran H, Wang DQ, Zhu YN. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plantEnvironmental Science and Pollution Research. 2011;18(9):1623–1632. Available from: https://dx.doi.org/10.1007/s11356-011-0523-3

  8. Tomiyasu T, Nagano A, Yonehara N, Sakamoto H, Rifardi, Ōki K, et al. Mercury contamination in the Yatsushiro Sea, south-western Japan: spatial variations of mercury in sedimentScience of The Total Environment. 2000;257(2-3):121–132. Available from: https://dx.doi.org/10.1016/s0048-9697(00)00502-7

  9. Huang M, Deng S, Dong H, Dai W, Pang J, Wang X. Impacts of Atmospheric Mercury Deposition on Human Multimedia Exposure: Projection from Observations in the Pearl River Delta Region, South ChinaEnvironmental Science & Technology. 2016;50(19):10625–10634. Available from: https://dx.doi.org/10.1021/acs.est.6b00514

  10. DoHaHSATSaDRUS. Toxicological profile for mercury. (pp. 1-100) United States. Department Of Health And Human Services. Agency For Toxic Substances And Disease Registry. 1989.

  11. Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020Atmospheric Environment. 2010;44(20):2487–2499. Available from: https://dx.doi.org/10.1016/j.atmosenv.2009.06.009

  12. Sun G, Sommar J, Feng X, Lin CJ, Ge M, Wang W, et al. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and BrEnvironmental Science & Technology. 2016;50(17):9232–9241. Available from: https://dx.doi.org/10.1021/acs.est.6b01668

  13. Coetzee L, Preez HD, Vuren JV. Metal concentrations in Clarias gariepinus and Labeo umbratus from the Olifants and Klein Olifants River, Mpumalanga, South Africa: zinc, copper, manganese, lead, chromium, nickel, aluminium and iron. In: Water SA. (Vol. 28, pp. 433-448) Academy of Science of South Africa. 2002.

  14. Kashyap AK, Steel J, Oner AF, Dillon MA, Swale RE, Wall KM, et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategiesProceedings of the National Academy of Sciences. 2008;105(16):5986–5991. Available from: https://dx.doi.org/10.1073/pnas.0801367105

  15. Shakeri A, Moore F. The impact of an industrial complex on freshly deposited sediments, Chener Rahdar river case study, Shiraz, IranEnvironmental Monitoring and Assessment. 2010;169(1-4):321–334. Available from: https://dx.doi.org/10.1007/s10661-009-1173-5

  16. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sourcesAtmospheric Chemistry and Physics. 2010;10(13):5951–5964. Available from: https://dx.doi.org/10.5194/acp-10-5951-2010

  17. Zhang L, Wang S, Wang L, Wu Y, Duan L, Wu Q, et al. Updated Emission Inventories for Speciated Atmospheric Mercury from Anthropogenic Sources in ChinaEnvironmental Science & Technology. 2015;49(5):3185–3194. Available from: https://dx.doi.org/10.1021/es504840m

  18. Programme UNE. Global Mercury Assessment 2013: Sources, emissions, releases, and environmental transport. 2013.

  19. RONCHETTI R, ZUURBIER M, JESENAK M, KOPPE JG, AHMED UF, CECCATELLI S, et al. Children's health and mercury exposureActa Paediatrica. 2006;95(s453):36–44. Available from: https://dx.doi.org/10.1080/08035250600886157

  20. Bank MS. The mercury science-policy interface: History, evolution and progress of the Minamata ConventionScience of The Total Environment. 2020;722:137832. Available from: https://doi.org/10.1016/j.scitotenv.2020.137832

  21. Al-Ansari EMAS, Abdel-Moati MAR, Yigiterhan O, Al-Maslamani I, Soliman Y, Rowe GT, et al. Mercury accumulation in Lethrinus nebulosus from the marine waters of the Qatar EEZMarine Pollution Bulletin. 2017;121(1-2):143–153. Available from: https://dx.doi.org/10.1016/j.marpolbul.2017.04.024

  22. S G, B L, A L, F MA, P A, C C, et al. Drivers of variability in mercury and methylmercury bioaccumulation and biomagnification in temperate freshwater lakesChemosphere. 2021. Available from: https://pubmed.ncbi.nlm.nih.gov/33248739/

  23. Su Y, Han FX, Chen J, Sridhar BBM, Monts DL. Phytoextraction and Accumulation of Mercury in Three Plant Species: Indian Mustard (<i>Brassica Juncea</i>), Beard Grass (<i>Polypogon monospeliensis</i>), and Chinese Brake Fern (<i>Pteris vittata)</i>International Journal of Phytoremediation. 2008;10(6):547–560. Available from: https://dx.doi.org/10.1080/15226510802115091

  24. Roberts HL. Some General Aspects of Mercury ChemistryAdvances in Inorganic Chemistry and Radiochemistry. 1968;11:309–339. Available from: https://doi.org/10.1016/S0065-2792(08)60169-7

  25. Cotton FA, Wilkinson G. Advanced inorganic chemistry. (Vol. 594) New York. Wiley. 1962.

  26. Rudnick RL, Gao S. Composition of the Continental Crust. In: G(DHaKKT., ed. Treatise on Geochemistry. (Vol. 3, pp. 1-64) Elsevier. 2003.

  27. Alloway BJ. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. (Vol. 22) Springer. 2013.

  28. Broussard LA, Hammett-Stabler CA, Winecker RE, Ropero-Miller JD. The Toxicology of MercuryLaboratory Medicine. 2002;33(8):614–625. Available from: https://dx.doi.org/10.1309/5hy1-v3ne-2lfl-p9mt

  29. E ND, F BM, P MT. The determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometrySpectrochimica Acta Part B: Atomic Spectroscopy. 1999;p. 1141–1153. Available from: https://doi.org/10.1016/S0584-8547(99)00057-9

  30. Registry AUDoHaHSAfTSaD. Toxicological Profile for mercury. 1999.

  31. Dart RC. Medical Toxicology. Lippincott Williams & Wilkins. 2004.

  32. Bhan A, Sarkar NN. Mercury in the Environment: Effect on Health and ReproductionReviews on Environmental Health. 2005;20(1):39–56. Available from: https://dx.doi.org/10.1515/reveh.2005.20.1.39

  33. Urano T, Naganuma A, Imura N. Methylmercury-cysteinylglycine constitutes the main form of methylmercury in rat bileResearch communications in chemical pathology and pharmacology. 1988;60(2):197–210. Available from: https://pubmed.ncbi.nlm.nih.gov/2899337/

  34. Nartey VK, Klake RK, Doamekpor LK, Sarpong-Kumankomah S. Speciation of mercury in mine waste: case study of abandoned and active gold mine sites at the Bibiani–Anwiaso–Bekwai area of South Western GhanaEnvironmental Monitoring and Assessment. 2012;184(12):7623–7634. Available from: https://dx.doi.org/10.1007/s10661-012-2523-2

  35. Vannini A, Nicolardi V, Bargagli R, Loppi S. Estimating Atmospheric Mercury Concentrations with LichensEnvironmental Science &amp; Technology. 2014;48:8754–8759. Available from: https://dx.doi.org/10.1021/es500866k

  36. Nik MG, Shahbazi B, Grigoryan K. The study of mercury pollution distribution around a chlor-alkali petrochemical complex, Bandar Imam, southern IranEnvironmental Earth Sciences. 2012;67(5):1485–1492. Available from: https://dx.doi.org/10.1007/s12665-012-1592-4

  37. Hutcheson MS, Smith CM, Rose J, Batdorf C, Pancorbo O, West CR, et al. Temporal and Spatial Trends in Freshwater Fish Tissue Mercury Concentrations Associated with Mercury Emissions ReductionsEnvironmental Science &amp; Technology. 2014;48(4):2193–2202. Available from: https://dx.doi.org/10.1021/es404302m

  38. Sinicropi MS, Amantea D, Caruso A, Saturnino C. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoningArchives of Toxicology. 2010;84(7):501–520. Available from: https://dx.doi.org/10.1007/s00204-010-0544-6

  39. Ipolyi I, Massanisso P, Sposato S, Fodor P, Morabito R. Concentration levels of total and methylmercury in mussel samples collected along the coasts of Sardinia Island (Italy) Analytica Chimica Acta. 2004;505(1):145–151. Available from: https://dx.doi.org/10.1016/s0003-2670(03)00174-0

  40. Olivieri G, Novakovic M, Savaskan E, Meier F, Baysang G, Brockhaus M, et al. The effects of β-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and β-amyloid secretionNeuroscience. 2002;113(4):849–855. Available from: https://dx.doi.org/10.1016/s0306-4522(02)00211-7

  41. Uversky VN, Li J, Fink AL. Metal-triggered Structural Transformations, Aggregation, and Fibrillation of Human α-SynucleinJournal of Biological Chemistry. 2001;276(47):44284–44296. Available from: https://dx.doi.org/10.1074/jbc.m105343200

  42. Diamond GL, Zalups RK. Understanding Renal Toxicity of Heavy MetalsToxicologic Pathology. 1998;26(1):92–103. Available from: https://pubmed.ncbi.nlm.nih.gov/9502391/

  43. Homma-Takeda S, Takenaka Y, Kumagai Y, Shimojo N. Selective induction of apoptosis of renal proximal tubular cells caused by inorganic mercury in vivoEnvironmental Toxicology and Pharmacology. 1999;7(3):179–187. Available from: https://dx.doi.org/10.1016/s1382-6689(99)00012-5

  44. Patrick L. Mercury toxicity and antioxidants: part i: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicitymercury toxicityToxicology and Applied Pharmacology. 2002;7(6):456–471. Available from: https://pubmed.ncbi.nlm.nih.gov/12495372/

  45. Ji X, Liu C, Zhang M, Yin Y, Pan G. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubblesWater Research. 2020;173:115563. Available from: https://dx.doi.org/10.1016/j.watres.2020.115563

  46. Jordan MP, Stewart AR, Eagles-Smith CA, Strecker AL. Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplanktonScience of The Total Environment. 2019;667:601–612. Available from: https://dx.doi.org/10.1016/j.scitotenv.2019.02.259

  47. Satheeswaran T, Yuvaraj P, Damotharan P, Karthikeyan V, Jha DK, Dharani G, et al. Assessment of trace metal contamination in the marine sediment, seawater, and bivalves of Parangipettai, southeast coast of IndiaMarine Pollution Bulletin. 2019;149:110499. Available from: https://dx.doi.org/10.1016/j.marpolbul.2019.110499

  48. Razavi NR, Qu M, Chen D, Zhong Y, Ren W, Wang Y, et al. Effect of eutrophication on mercury (Hg) dynamics in subtropical reservoirs from a high Hg deposition ecoregionLimnology and Oceanography. 2015;60(2):386–401. Available from: https://dx.doi.org/10.1002/lno.10036

  49. Quiroga-Flores R, Guédron S, Achá D. High methylmercury uptake by green algae in Lake Titicaca: Potential implications for remediationEcotoxicology and Environmental Safety. 2021;207:111256. Available from: https://dx.doi.org/10.1016/j.ecoenv.2020.111256

  50. Liang P, Wu S, Zhang C, Zhang J, Wong M. Environmental geochemistry of Hg in intensive fish farming sites: Implications of Hg speciation change related to its health perspectivesCurrent Opinion in Environmental Science &amp; Health. 2021;20:100242. Available from: https://dx.doi.org/10.1016/j.coesh.2021.100242

  51. Liang P, Wu S, Zhang C, Xu J, Christie P, Zhang J, et al. The role of antibiotics in mercury methylation in marine sedimentsJournal of Hazardous Materials. 2018;360:1–5. Available from: https://dx.doi.org/10.1016/j.jhazmat.2018.07.096

  52. Rao MV. Mercury and its effects on mammalian systems- a critical reviewIndian J Environ Toxicol. 1997;7:3–11. Available from: https://www.cabidigitallibrary.org/doi/full/10.5555/19982207395

  53. Rao MV, Gangadharan B. Antioxidative potential of melatonin against mercury induced intoxication in spermatozoa in vitroToxicology in Vitro. 2008;22(4):935–942. Available from: https://dx.doi.org/10.1016/j.tiv.2008.01.014

  54. Endo T, Nakaya S, Kimura R, Murata T. Gastrointestinal absorption of inorganic mercuric compounds in vivo and in situToxicology and Applied Pharmacology. 1984;74(2):223–229. Available from: https://dx.doi.org/10.1016/0041-008x(84)90146-7

  55. Bulger RE. Renal Damage Caused by Heavy MetalsToxicologic Pathology. 1986;14(1):58–65. Available from: https://pubmed.ncbi.nlm.nih.gov/3715331/

  56. NAGANUMA A, FURUCHI T, MIURA N, HWANG GW, KUGE S. Investigation of Intracellular Factors Involved in Methylmercury Toxicity. The Tohoku Journal of Experimental Medicine. 2002;196(2):65–70. Available from: https://dx.doi.org/10.1620/tjem.196.65

  57. Sahaphong S, Trump BF. Studies of cellular injury in isolated kidney tubules of the flounder. V. Effects of inhibiting sulfhydryl groups of plasma membrane with the organic mercurials PCMB (parachloromercuribenzoate) and PCMB (parachloromercuribenzenesulfonate) The American Journal of Pathology. 1971;63(2):277. Available from: https://pubmed.ncbi.nlm.nih.gov/5090641/

  58. Endo T, Nakaya S, Kimura R. Gastrointestinal absorption of inorganic mercuric compounds in vitroToxicol. Appl. Pharmacol. 1986;83:187–196. Available from: https://www.sciencedirect.com/science/article/abs/pii/0041008X86902954

  59. Cox C, Clarkson TW, Marsh DO, Amin-Zaki L, Tikriti S, Myers GG. Dose-response analysis of infants prenatally exposed to methyl mercury: An application of a single compartment model to single-strand hair analysisEnvironmental Research. 1989;49(2):318–332. Available from: https://dx.doi.org/10.1016/s0013-9351(89)80075-1

  60. Inouye M, Kajiwara Y. Strain difference of the mouse in manifestation of hydrocephalus following prenatal methylmercury exposureTeratology. 1990;41(2):205–210. Available from: https://dx.doi.org/10.1002/tera.1420410212

  61. Yeoh TS, Lee AS, Lee HS. Absorption of mercuric sulphide following oral administration in miceToxicology. 1986;41(1):107–111. Available from: https://dx.doi.org/10.1016/0300-483x(86)90108-3

  62. Oudar P, Caillard L, Fillion G. In Vitro Effect of Organic and Inorganic Mercury on the Serotonergic SystemPharmacology &amp; Toxicology. 1989;65(4):245–248. Available from: https://dx.doi.org/10.1111/j.1600-0773.1989.tb01166.x

  63. Jonasson IR, Boyle RW. Geochemistry of mercury and origins of natural contamination of environmentCanadian Mining and Metallurgical Bulletin. 1972;65(717):32. Available from: https://www.osti.gov/etdeweb/biblio/6631686

  64. Ullrich SM, Tanton TW, Abdrashitova SA. Mercury in the Aquatic Environment: A Review of Factors Affecting MethylationCritical Reviews in Environmental Science and Technology. 2001;31(3):241–293. Available from: https://dx.doi.org/10.1080/20016491089226

  65. Fitzgerald WF, Lamborg CH. Geochemistry of Mercury in the EnvironmentTreatise of Geochemistry. 2007;p. 1–47. Available from: https://doi.org/10.1016/B0-08-043751-6/09048-4

  66. Clever HL, Johnson SA, Derrick ME. The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte SolutionsJournal of Physical and Chemical Reference Data. 1985;14(3):631–680. Available from: https://dx.doi.org/10.1063/1.555732

  67. Liu J, Feng X, Qiu G, Anderson CWN, Yao H. Prediction of Methyl Mercury Uptake by Rice Plants (Oryza sativa L.) Using the Diffusive Gradient in Thin Films TechniqueEnvironmental Science &amp; Technology. 2012;46(20):11013–11020. Available from: https://dx.doi.org/10.1021/es302187t

  68. Keating MH, Beauregard D, Benjey WG, LD, WHMPE, Peters WD, et al. Mercury Study Report to Congress. An Inventory of Anthropogenic Mercury Emissions in the United States . (Vol. 2) EPA. 1997.

  69. Li Y, Cai Y. Progress in the study of mercury methylation and demethylation in aquatic environmentsChinese Science Bulletin. 2013;58(2):177–185. Available from: https://dx.doi.org/10.1007/s11434-012-5416-4

  70. Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury Methylation by Dissimilatory Iron-Reducing BacteriaApplied and Environmental Microbiology. 2006;72(12):7919–7921. Available from: https://dx.doi.org/10.1128/aem.01602-06

  71. Narita M, Huang CC, Koizumi T, Yamagata T, Endo G. Identification and characterization of anaerobic mercury-resistant bacteria isolated from mercury-polluted sedimentWater Science and Technology. 2000;42(3-4):109–114. Available from: https://dx.doi.org/10.2166/wst.2000.0366

  72. Guimaraes JRD, Ikingura J, HA. Methyl mercury production and distribution in river water-sediment systems investigated through radiochemical techniquesWater, Air, and Soil Pollution. 2000;124(1- 2):113–124. Available from: https://link.springer.com/article/10.1023/A:1005206109083

  73. Berlin I. PL., ed. Organic compounds of mercury. 1983.

  74. Dutczak W, Clarkson TW, Ballatori N. Biliaryhepatic recycling of a xenobiotic: gallbladder absorption of methyl mercuryAm J Physiol . 1991. Available from: https://pubmed.ncbi.nlm.nih.gov/2058675/

  75. Iavicoli I, Fontana L, Bergamaschi A. The Effects of Metals as Endocrine DisruptorsJournal of Toxicology and Environmental Health, Part B. 2009;12(3):206–223. Available from: https://dx.doi.org/10.1080/10937400902902062

  76. Coccini T, Randine G, Candura SM, Nappi RE, Prockopld LD, Manzo L. Low-level exposure to methylmercury modifies muscarinic cholinergic receptorbinding characteristics in rat brain and lymphocytes:physiologic implication and new opportunities in biological monitoringPediatric Clinics of North America. 2000;54(2):29–33. Available from: https://pubmed.ncbi.nlm.nih.gov/10620521/

  77. Wada H, Cristol DA, McNabb FMA, Hopkins WA. Suppressed Adrenocortical Responses and Thyroid Hormone Levels in Birds near a Mercury-Contaminated RiverEnvironmental Science &amp; Technology. 2009;43(15):6031–6038. Available from: https://dx.doi.org/10.1021/es803707f

  78. McGregor AJ, Mason HJ. Occupational Mercury Vapour Exposure and Testicular, Pituitary and Thyroid Endocrine FunctionHuman &amp; Experimental Toxicology. 1991;10(3):199–203. Available from: https://pubmed.ncbi.nlm.nih.gov/1678950/

  79. Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, et al. Methylmercury Induces Pancreatic β-Cell Apoptosis and DysfunctionChemical Research in Toxicology. 2006;19(8):1080–1085. Available from: https://dx.doi.org/10.1021/tx0600705

  80. Gonzalez-Ramirez D, Maiorino RM, Zuniga-Charles M, Xu Z, Hurlbut KM, Junco-Munoz P, et al. Sodium 2, 3-dimercaptopropane-1-sulfonate challenge test for mercury in humans: II. Urinary mercury, porphyrins and neurobehavioral changes of dental workers in MonterreyMexico. Journal of Pharmacology and Experimental Therapeutics. 1995;272(1):264–274. Available from: https://pubmed.ncbi.nlm.nih.gov/7815341/

  81. Weiner JA, Nylander M. An estimation of the uptake of mercury from amalgam fillings based on urinary excretion of mercury in Swedish subjectsScience of The Total Environment. 1995;168(3):255–265. Available from: https://dx.doi.org/10.1016/0048-9697(95)04609-5

  82. Magour S, Mäser H, Greim H. The Effect of Mercury Chloride and Methyl Mercury on Brain Microsomal Na+K+‐ATPase after Partial Delipidisation with Lubrol®Pharmacology &amp; Toxicology. 1987;60(3):184–186. Available from: https://dx.doi.org/10.1111/j.1600-0773.1987.tb01730.x

  83. Aschner M, Eberle NB, Miller K, Kimelberg HK. Interactions of methylmercury with rat primary astrocyte cultures: inhibition of rubidium and glutamate uptake and induction of swellingBrain Research. 1990;530(2):245–250. Available from: https://dx.doi.org/10.1016/0006-8993(90)91290-w

  84. Cooper GP, Manalis RS. Influence of heavy metalson synaptic transmission: a review. 1983;4:69–83. Available from: https://pubmed.ncbi.nlm.nih.gov/6322059/

  85. Coccini T, Randine G, Candura SM, Nappi RE, Prockop LD, Manzo L. Low-Level Exposure to Methylmercury Modifies Muscarinic Cholinergic Receptor Binding Characteristics in Rat Brain and Lymphocytes: Physiologic Implications and New Opportunities in Biologic MonitoringEnvironmental Health Perspectives. 2000;108(1):29. Available from: https://dx.doi.org/10.2307/3454292

  86. Atchison WD, Hare MF. Mechanisms of methylmercury‐induced neurotoxicityThe FASEB Journal. 1994;8(9):622–629. Available from: https://dx.doi.org/10.1096/fasebj.8.9.7516300

  87. Chang LW. Neurotoxic effects of mercury—A reviewEnvironmental Research. 1977;14(3):329–373. Available from: https://doi.org/10.1016/0013-9351(77)90044-5

  88. Bapu C, Rao P, Sood PP. Restoration of methylmercury inhibited adenosine triphosphatases duringvitamin and monothiol therapyJ Environ PatholToxicol Oncol. 1998;17:75–80. Available from: https://pubmed.ncbi.nlm.nih.gov/9490323/

  89. Aschner M, Aschner JL. Mercury neurotoxicity: Mechanisms of blood-brain barrier transportNeuroscience &amp; Biobehavioral Reviews. 1990;14(2):169–176. Available from: https://dx.doi.org/10.1016/s0149-7634(05)80217-9

  90. Rajanna B, Hobson M, Harris L, Ware L, Chetty CS. Effects of cadmium and mercury on Na+, K+ATPases and the uptake of 3H-dopamine in rat brain synaptosomesArch Physiol Biochem. 1990;98:291–296. Available from: https://pubmed.ncbi.nlm.nih.gov/1708997/

  91. M MK, I CE. Effects of mercury on lysosomal protein digestion in the kidney proximal tubulea Journal of Technical Methods and Pathology. 1978;p. 165–174. Available from: https://pubmed.ncbi.nlm.nih.gov/203771/

  92. Yasutake A, Hirayama K, Inouye M. Sex Difference in Acute Renal Dysfunction Induced by Methylmercury in MiceRenal Failure. 1990;12(4):233–240. Available from: https://dx.doi.org/10.3109/08860229009060730

  93. Miettinen M, Turpeinen O, Karvonen M, Elosuo R, Paavilainen E. Effect of diet on coronary-heart-disease mortalityThe Lancet. 1973;302(7840):1266–1267. Available from: https://dx.doi.org/10.1016/s0140-6736(73)91009-x

  94. Nabi S. Toxic Effects of Mercury. Springer India. 2014.

  95. SJ W, DM V. Withrow and MacEwen’ssmall animal clinical oncology. (4). (pp. 73-74) St. Louis. Elsevier. 2007.

  96. InSug O, Datar S, Koch CJ, Shapiro IM, Shenker BJ. Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserveToxicology. 1997;124(3):211–224. Available from: https://dx.doi.org/10.1016/s0300-483x(97)00153-4

  97. Flora SJS, Mittal M, Mehta A. Heavy metal induced oxidative stress & its possible reversal by chelation therapyIndian Journal of Medical Research. 2008;128(4):501. Available from: https://pubmed.ncbi.nlm.nih.gov/19106443/

  98. Lund BO, Miller DM, Woods JS. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondriaBiochemical Pharmacology. 1993;45(10):2017–2024. Available from: https://dx.doi.org/10.1016/0006-2952(93)90012-l

  99. Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT. Effects of micronutrients on metal toxicity. Environmental Health Perspectives. 1998;106(suppl 1):203–216. Available from: https://dx.doi.org/10.1289/ehp.98106s1203

  100. Shenker BJ, Guo TL, Shapiro IM. Mercury-Induced Apoptosis in Human Lymphoid Cells: Evidence That the Apoptotic Pathway Is Mercurial Species DependentEnvironmental Research. 2000;84(2):89–99. Available from: https://dx.doi.org/10.1006/enrs.2000.4078

  101. Smith PJ, Langolf GD, Goldberg J. Effect of occupational exposure to elemental mercury on short term memory. Occupational and Environmental Medicine. 1983;40(4):413–419. Available from: https://dx.doi.org/10.1136/oem.40.4.413

  102. Ganther HE, Goudie C, Sunde ML, Kopecky MJ, Wagner P, Oh SH, et al. Selenium: Relation to Decreased Toxicity of Methylmercury Added to Diets Containing TunaScience. 1972;175(4026):1122–1124. Available from: https://dx.doi.org/10.1126/science.175.4026.1122

  103. Queiroz MLDS, Pena SC, Salles TSI, Capitani EMD, Saad STO. Abnormal antioxidant system in erythrocytes of mercury-exposed workersHuman & Experimental Toxicology. 1998;17(4):225–230. Available from: https://pubmed.ncbi.nlm.nih.gov/9617635/

  104. Lash LH, Zalups RK. Alterations in renal cellular glutathione metabolism after in vivo administration of a subtoxic dose of mercuric chlorideJournal of Biochemical Toxicology. 1996;11(1):1–9. Available from: https://dx.doi.org/10.1002/(sici)1522-7146(1996)11:1<1::aid-jbt1>3.0.co;2-o

  105. Boujbiha MAM, Hamden K, Guermazi F, Bouslama A, Omezzine A, Feki AE. Impairment of Spermatogenesis in Rats by Mercuric Chloride: Involvement of Low 17β-Estradiol Level in Induction of Acute Oxidative StressBiological Trace Element Research. 2011;142(3):598–610. Available from: https://dx.doi.org/10.1007/s12011-010-8774-2

  106. Rao MV. Histophysiological changes of sex organs in methylmercury intoxicated miceEndocrinologia Experimentalis. 1989;23(1):55–62. Available from: https://pubmed.ncbi.nlm.nih.gov/2714228/

  107. Rao MV. Mercury and its effects on mammalian systems- a critical reviewIndian J Environ Toxicol. 1997;7:3–11. Available from: https://www.cabidigitallibrary.org/doi/full/10.5555/19982207395

  108. Schrag SD, Dixon RL. Occupational Exposures Associated with Male Reproductive DysfunctionAnnual Review of Pharmacology and Toxicology. 1985;25(1):567–592. Available from: https://pubmed.ncbi.nlm.nih.gov/2408559/

  109. Methylmercury NRC(CotTEo. Toxicological effects of methylmercury. .

  110. Langworth S, Elinder C, Sundqvist KG. Minor effects of low exposure to inorganic mercury on the human immune system. Scandinavian Journal of Work, Environment &amp; Health. 1993;19(6):405–413. Available from: https://dx.doi.org/10.5271/sjweh.1454

  111. Bigazzi PE. Lessons from animal models: The scope of mercury-induced autoimmunityClinical Immunology and Immunopathology. 1992;65(2):81–84. Available from: https://dx.doi.org/10.1016/0090-1229(92)90210-f

  112. Kolata G. New suspect in bacterial resistance:amalgam. The New York Times. 1993.

  113. Norseth T, Clarkson TW. Intestinal transport of203Hg-labeled methylmercury chloride; role of biotransformation in ratsArch Environ Health. 1971;22:258. Available from: https://pubmed.ncbi.nlm.nih.gov/5550173/

  114. Donix M, Poettrich K, Weiss PH, Werner A, Kummer Rv, Fink GR, et al. Age-Dependent Differences in the Neural Mechanisms Supporting Long-Term Declarative MemoriesArchives of Clinical Neuropsychology. 2010;25(5):383–395. Available from: https://dx.doi.org/10.1093/arclin/acq037

  115. Dickson DW. Neuropathology of Alzheimer's disease and other dementiasClinics in Geriatric Medicine. 2001;17(2):209–228. Available from: https://doi.org/10.1016/s0749-0690(05)70066-5

  116. Sassin I, Schultz C, Thal DR, Rüb U, Arai K, Braak E, et al. Evolution of Alzheimer's disease-related cytoskeletal changes in the basal nucleus of MeynertActa Neuropathologica. 2000;100(3):259–269. Available from: https://dx.doi.org/10.1007/s004019900178

  117. GL W. Neuropathologic changes in Alzheimer’sdiseaseJ Clin Psychiatry. 2003;p. 7–10. Available from: https://pubmed.ncbi.nlm.nih.gov/12934968/

  118. Ariza ME, Bijur GN, Williams MV. Lead and mercury mutagenesis: Role of H2O2, superoxide dismutase, and xanthine oxidaseEnvironmental and Molecular Mutagenesis. 1998;31(4):352–361. Available from: https://doi.org/10.1002/(SICI)1098-2280(1998)31:4<352::AID-EM8>3.0.CO;2-K

  119. T M, K F, L K, P L, E R, J. R, et al. Phytoremediation—biological cleaning of a polluted environmentReviews on environmental health. 2004;19(1):63–82.

  120. Xun Y, Feng L, Li Y, Dong H. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sitesChemosphere. 2017;189:161–170. Available from: https://dx.doi.org/10.1016/j.chemosphere.2017.09.055

  121. Wheeler M. Measuring mercury. Environmental Health Perspectives. 1996;104(8):826–830. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469443/

  122. Rugh CL, Senecoff JF, Meagher RB, Merkle SA. Development of transgenic yellow poplar for mercury phytoremediationNature Biotechnology. 1998;16(10):925–928. Available from: https://dx.doi.org/10.1038/nbt1098-925

  123. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, et al. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using PlantsNature Biotechnology. 1995;13(5):468–474. Available from: https://dx.doi.org/10.1038/nbt0595-468

  124. Patra M, Bhowmik N, Bandopadhyay B, Sharma A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic toleranceEnvironmental and Experimental Botany. 2004;52(3):199–223. Available from: https://dx.doi.org/10.1016/j.envexpbot.2004.02.009

  125. Millán R, Lominchar MA, Rodríguez-Alonso J, Schmid T, Sierra MJ. Riparian vegetation role in mercury uptake (Valdeazogues River, Almadén, Spain) Journal of Geochemical Exploration. 2014;140:104–110. Available from: https://dx.doi.org/10.1016/j.gexplo.2014.02.021

  126. Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plantJournal of Hazardous Materials. 2012;231-232:36–42. Available from: https://dx.doi.org/10.1016/j.jhazmat.2012.06.031

  127. Hussein HS, Ruiz ON, Terry N, Daniell H. Phytoremediation of Mercury and Organomercurials in Chloroplast Transgenic Plants: Enhanced Root Uptake, Translocation to Shoots, and VolatilizationEnvironmental Science &amp; Technology. 2007;41(24):8439–8446. Available from: https://dx.doi.org/10.1021/es070908q

  128. Henriques B, Rocha LS, Lopes CB, Figueira P, Monteiro RJR, Duarte AC, et al. Study on bioaccumulation and biosorption of mercury by living marine macroalgae: Prospecting for a new remediation biotechnology applied to saline watersChemical Engineering Journal. 2015;281:759–770. Available from: https://dx.doi.org/10.1016/j.cej.2015.07.013

  129. Zhang H, Wu S, Leibensperger EM. Source-receptor relationships for atmospheric mercury deposition in the context of global changeAtmospheric Environment. 2021;254:118349. Available from: https://dx.doi.org/10.1016/j.atmosenv.2021.118349

Cite this article

M P Sampada, M David. A Global Mercury Contamination and its Potential Hazards: A Review. Karnatak University Journal of Science 55(1), (2024), 1–16

Views
286
Downloads
149
Citations